(-

Outils informatiques pour le Big Data

en astronomie

Lionel Fillatre
Universite Nice Sophia Antipolis
Polytech Nice Sophia
Laboratoire 13S

Ecole d'été thématique CNRS BasMatl
3 juin 2015

Outlines

® What is the Big Data (including Hadoop Ecosystem)
* HDFS (Hadoop Distributed File System)

® What is MapReduce?

* Image Coaddition with MapReduce

® What is NoSQL?

® What is Pig?

® What is Hive?

® What is Spark?

® Conclusion

What is the Big Data

Big Data Definition

e No single standard definition. ..

“Big Data” is data whose scale, diversity, and complexity
require new architecture, techniques, algorithms, and analytics

to manage it and extract value and hidden knowledge from it. ..

Characteristics of Big Data:
1-Scale (Volume)

e Data Volume

® 44x increase from 2009 to 2020

® From 0.8 zettabytes to 35zb

® Data volume is increasing exponentially

terabytes petabytes

exabytes

the amount of data stored by the average company today

Twitter: Tweets Per Day

\\\\\\\\\

[] o
Jn07 Jan08 Oct09 Sepl0 Junll Octll Juni2
oo & 1012 Do Feinis bogsforbes.comldamefeniels

-
Exponential incredse in

collected/ generated data

zettabytes

The Digital Universe 2009-2020

Growing
o
2008 " Factor Of 44
082y -
2020: 35.2 Zlmbﬁcl

Data storage growth
8 In millions of petabytes

f.— (One petabyte = 1,024 terabytes) ?

; /

: e

05 07 09 11 13e

“15e

-,

Characteristics of Big Data:
2-Complexity (Variety)

Various formats, types, and structures

Text, numerical, images, audio, video,
sequences, time series, social media

data, multi-dim arrays, etc...

Static data vs. streaming data

A single application can be

generating/ collecting many types of
data

To extract knowledge

=> all these types of data need to be linked together

Characteristics of Big Data:
3-Speed (Velocity)

® Data is generated fast and need to be processed fast
® Online Data Analytics
e Late decisions = missing opportunities

® Examples

* E-Promotions: Based on your current location, your purchase history, what you like

=>» send promotions right now for store next to you

e Healthcare monitoring: sensors monitoring your activities and body

" 4 any abnormal measurements require immediate reaction

(-

Some Make it bV's

' Volume Veloci

Batch
Real/near-time
Processes
Streams

» Taerahytes &
= Records/Arch i
« Transactions |
« - Tables, Files ~ Je™

i
L] - L] -

« - o L e T
5 e i

e e e b T P " i
] i = =1} LA

Value

. b ! e T e AU
2 R L e i L e o R e Py Y T
Variety | ~ € @« =
o 2 -'I.. _-...--:.:-\.5_.- x ,.:.: 5 ..: :_.l
{ T e T A T e e T

« Structured TR :-1 + Statistical

S st Bigﬂﬂia / =+ Events

= Multi-factor b R i « Correlations
» Probabilistic * Hypothetical

f

S Trustworthiness
= Authenticity

= Drigin, Reputation
= Availability
= Accountability

@ Veracity

What technology for Big Data?

BIG DATA

A BRIEF HISTORY

1Google

September 1998

Google founded

Gmail

April 2004

Boogle launches

WIKIPEDIA
T Froe Ennpelipadis
Januvary 2001
Jirnmy Wales and

Larry Sange

e
launch Wikipedia

BERKELEY 3 TOKYD Lcele :
i MCENE OPEN NuTCH
*] CABINET e
GOOGLE

GO0GLE

SEARCH GOOGLE
MAPREDUCE
ENGINE BPS PAPER PAPER

(1 Tube]

February 2005

Youtube i launched

Feb
Twit

CoucHos

D

s)7 0 o D om0 > zum D e 2003 > 20w)_zas

facebook

September 2008

Faceback &5 launched

twitter¥
rary 2006

or is launched

iPhane

- -9
l'l
and30I1>
November 2007
Andreid 05

beta released

®& iPhone

June 2007

First Generation

foursquicire)

March 2009

Foursguare is launched

Big Data Landscape

- - N
Vertical Apps Ad/Media Apps Business Analytics and
[— collective]| Intelligence - Visualization
) = __ — ORACLE' | Hvperion vy tableou
- W rm - Recorded Firture w e ,_.--:;'\ . OQPERA metalayer d
L{)g Data APPS | i I usiness b]ects R._Ir-1=_-tru:s @]HET&HEHHETS
Media~ Data XD m| Business Intelligence TERADATA ASTER ERERES
splunk:.-- [EEEM @ sumologic Science TURN KARMAS#HERE
- J N COGNOS SSB.S ET.|BCO' | E
—~ . @e2ncpticon ===
Data As A Service Autonomy D Datameer
_ | _ TERE | | Qlikiew bime 1 {J platfora EIRRO
GNIP IR 2 FNRIX. @ LexisNexis+ & OaA - J\ Ji' : GoodData y kaLteryx “visual ly m)
{ AN 4 AW 4 A4 3\
Analytics Operational Infrastructure As Structured
Infrestructure Infrastructure A Service Databases
& “r_l I'_. [.
Hg"rig‘m*‘ YERTIGA MAER| | coucnsase 10gen | &= amazon ORACLE
[lUU[]E['a INFOBRIGHT e
ParAcceL |ERADA HADAPT
EMC @ aneneun. Vol
N NETEZZA kogniti -.MarkLﬂ . G e BiaQ
kDHTF!STFIX* EASOL) \ gic JAR oogle BigQuery)
| Technologies
= v ™~ EPARACHE
1;@113@35& M HSASE O Cassandra_

Copyright © 2012 Dave Feinleib

dave(@vcdave.com

blogs.forbes.com/davefeinleib

Big Data Landscape (Version 2.0)

Infrastructure Applications

NoSQL Databases \' " Hadoop Related “ Analytics Solutlons \ 7 Data Visualization : : Ad Optimization i
sese (BRI P 2
10gen onras et O) ClouderaHADAPT! | (1@ Palantir Cplatfora | Quid Gvisually ;| |; DataX0 [Ereoa irr B
| Coucupase w cLoubint 1 mam infochimps! IPERASIVED Datamear | = agwmg: ! Obheka ?ﬁ%g,_.l |
| HYPERTABLE 1 o N I(mw.r_ Kitenga " roc. vel |
I\'Neoqj € (ia il Lol = oo 3 luhrwsm datasporall = metalayer, ||\ .. TURN [33ecross |
__________ s | . Zettaset ! ClearStory S T
f‘ -N;JSaLB;t;);s;— \l Ig=R BN ., -, 1 r4+oblecu 1SS/ I’ Publisher\\ ll’ Marketing \l
1 . M | Bl ittt o2 I "
| 8" MarkLogic < ! Microsoft | || Statistical Computmg\ N '9‘1_“2‘_“'_‘}‘1‘1 lh 10l ¥ LATVACE ENGINES |
[. I i sapee 1 I SREENPLUN. 1 ' BICYTREER. ! coilrams N AL VIS,H{%,,‘;! ‘S‘mhml
P‘”‘“ g3 mameq . L l{ Social Media " viel ! I
\) Volt 8 NUO amazon @bole iR I _»% Prior Knowledge 1, a — i eldex | bloanreach |
------------- ,-..-:_' - _T." e mm=- ‘_' I REVOLUTION mamanly = 1| |\ &yleidbot ' \ &2 CLICKFOX. !
e oatabass, (Management ' {GstrSemics) || ! e, ey o\ i N .
B R T bl | Tt < 22222 tn T | e v wron @ G
N ——— 11 HPCCSystems | || === === === o o, e NEWTON a
I 4% kogn Looren R rveuen]y @Acunu | ||/ sentiment Analysis 1/ Analytics Services A BIG B b |
| S0 | | ' MAcunu _, |1 ‘W I THINK BIG numberFire MileSense %bﬂb'
ARFACCEL. | o S‘p* A o o ~ 1 @ | \
@ sxeeneiom | S gacerg |l s |1 o8 SENTEE) 2. oo Bt T B
' [ERADATA : R s A (of ! R _'_'_-_--_-_-_-_‘ |W.QI:EBA;;. s { Application Service Providers E
, [/_/\/\1 1 '@IVIPERMWAI ||| Location/People/ Vo= —"="=r=rr = ,s : I
N NETEZZA | I\ F‘DATADOG i . I Events 1 IBig Data Search . " '\ Q)colloctwcl]
v InfiiiDB ! ' BSDATADOG -+ [N, || oot Fiptop 1 ! [N Avonomy 1| o == === === === ==~
‘\Sa'leemer, = e =~ 1 codefortytwo 1 ||| :ggumﬁm,ml,:::::::::\
=SS =='= =/ 1 Crowdsourcing 1 I e IT Analytics | Data Sources
g Storage l: (€% CROWD : \ DI\TI\GU'SE RN 10} BA_D_”;{I" / splunk> gsumologic | [o = = = = = N rmmmm——— ~
1 ™ Cleversafe hans COMPUTING | > = = = = =~ R e Data ! DataSources \
|("c h ’ 14" : =y { _Real-Time |fCrowdsourced ISMB Analytics i T 1
I : { Collection/ I i Marketglacesl EEEEE 0 SET
" pa'\asas I CrowdFlower | | l_l' Analytic 'l SUMA“ 1 ! GNIP |
| Snimblestorage || gpapg, 11 ZmEMSPOR JI "Il DataKind I - | R iR !
| amedfloarall . I Q@aspera | /|, Hrerscean, - RIMetrics |f | i DataMarket, 1 infochimps COO
bCompuvé:/I \\F“?‘E’?‘?".‘.,‘.‘!“.'/";Modeoblo' Kfeedlo' " _ kaggle ," eustty I‘Q\MndcmsAmre. &423:;“ I
——————————————————————————— O S S i, Marketjloce 7
b e . - ———
i (Withings _P;r;o;aTD_at_a % Basis
S % BASIS
AR =% Loogle Cross Infrastructure / Analytics 5 i rersonal Data "
So7 0838 IEM. 8 amcrosot vmware amazon [ITEIE] T Auonony",.. \P.--‘!‘L"‘!‘.".".“ﬁ ‘:f*_*y
_____ ———=—=== — O enS_Q!‘r_CQETQLECtS —————————————————————
" Erammwork ||’Queryj Data‘f g]nkcess .mongolm |{ Coordination / I{ Real - \" Statistical \|{ Machine \lll Cloud
(P ll(‘w‘Flow l | | ¥ ousandre 2SciDE & o Workflow :: Time |l Tools |l Learning 1, Deployment !
LGB < Bl ZooKeeper talen 1} :
| S W) \FeHsE A S QY U‘)SQWP" coGas n S .’Sm””" n__ B _)

__________________________________ /___— N - - - - - i - o in
e

© Matt Turck (@mattturck) and ShivonZilis (@shivonz) Bloomberg Ventures

BIG DATA LANDSCAPE, VERSION 3.0

I Exrar Acgugton o PO I

Infrastructure Anaiytica l
’ s NProdie 2 HADAPRT Pl ice o Fdrake o WETA 6;\” [JOYEY s Foharbest
|4 mt- et |12 EIDUC'QT& gplice 5“\”&"*?;3‘;': TREPAREL g 2 Sense_ 23 Yieldex
| = é v 3 AlXD - aqofﬂ gr' N Do w é --‘?. ~Hk” AR 3 - a,,.el&ot;
l a Ccmun tiv .".‘_&ER nearswi|l 3 2 1
‘ g mm 2) 3 o Fhat e
' : A o3 | i b Datadravity - k‘ o > | * LATTICE ENGINES
: ". '& Notﬂ 3“ I t : q - ‘sdm A v
| _m £y N Fipituiad | RIS LUILEET o B g) Lrourcknt
| g 5 L i || Rt 2 g ol 3 Svisuatly ®msers Qivra S Prm—
| g 4 .‘\ "" JV -.i N 5 - a -
| -4 L] | P g;;;.-m“ 4 doonanuman ||| o || T metaia
—- ”~ T = - B~ >
i l anuug“ m‘ .m: g @”“c s d) ':Q,Uld 5 ﬁé’%mqn‘gi M &l_ﬁle":f '7N M'",",;'_'
| eu:n:l;lr.,,,“ 3 HPCC Sputarrh rvmmdes @G e 5 a - 's“f’j M Cucirax. Pl
| ' i ~ Ptoms QPatamr fh il
Smetne BNy - Acunu hom m A ” evolv® ©
S lin e ok G ev-‘ e | E 8 entelo ﬂlld
=X
l f DB f)h:::b 2 g S “l.endllp B roacaTa
nfir B SackIC bdemard SRS : za T
nmﬁs %é @’an Areree o OnDeck> || 3 Bliex Mochea |
Server|| 3 = ecemwe hasw, EEEENEE woerlav markA2 e NS [Lscience
ParAccie FADATADOG baundny . L b 3 5
: T wemlllFs o |13 l""“ ¢ fesdzol
B < - -Theuse E 3 vy
2 E oM g Y) v | .) - -
aster dota é - .§ Qm:upcu’f“ s e 332 gg mx_nrwro« o
& Wirkslng: _ I— G685 R 3 pm s
g L Biimnecrisd a5 O ‘ aswmocse ||| Qo |32 5 Clever
g 3., : *.l: ISEARS ey
S e N g 0y oy | P [
m v:v“-ly T * OTONTMNAITY 7 5 i, G et wmd LRI 5*:\"& 3 1 BIG
“ rotewcAs 3 . Eivwnbedata Dartar i ™ “ sumall custora z Gim s MDW/E&
r‘"u'"“"".- -mm_‘[i'.“m S """l 5 YA —n Sl S emn Gw— e —— — — — — — r‘::hh " = F ®lm......‘ b
E .07 e i :',"4, FLATIRON Ea
I EEE'..'. vmware 1M0daa B re e TErRAnTS '!nﬂo- 3 Coaely oy M’VH a2
~ Open Source |
ol ol || g 5 e ascirRORACLE Yy o g ab
Hadooo YANN 32 | JTerens s S - %
w2 9 F i airee v WG sq0en| | 3 2 * Toce A S o,
hu&w-‘-u: O O -VCOLEFM.D:_’_Q_'E!SS g a Q430 A o w itk t U RunKeeper “ § g m ‘smoe |
e -t Blasns S0 ponce || — Withings [¥Zasi] S5 |28 5 om0 W o

© Mam Tuck (@mamturck) Sutian Dong (S@swmandong) & FistMark Chpsd (@ samarkcap)

Hadoop Origins

o Apache Hadoop is a framework that allows for the
distributed processing of large data sets accross clusters of

commodity computers using a simple programming model.

®* Hadoop is an open-source implementation of Google
MapReduce and Google File System (GFES).

* Hadoop tulfills need of common infrastructure:
* Efficient, reliable, easy to use,

® Open Source, Apache License.

s

'Apache Hadoop Ecosystem

Hadoop Ecosystem (main elements)

Sqoop -

Data Exchange

Flume

Log Collector

mbari
Amb
Provisioning, Managing and Monitoring Hadoop Clusters
w
g 3 s
& 2 ? ‘a
= ot (i1
5 S 11
: il Ga|l 25 T
= c 0o ¢ L2
< 2 = 5 Z @ O |(T==y
S 20 85 O F 25 5
2 & == e 5 I iy by
3
U c
_ @ YARN Map Reducev2 || § £
g S || WA Distributed Processing Framework ':E S
T
L < :
< T || HDFs ,
ls S Hadoop Distributed File System el

e
Data Storage

* Storage capacity has grown exponentially but read
speed has not kept up
® 1990:
Store 1,400 MB
Transter speed of 4.5MB/s

Read the entire drive in ~ 5 minutes

e 72010:
Store 1 TB
Transfer speed of 100MB/s

Read the entire drive in ~ 3 hours
o Hadoop - 100 drives Working at the same time can
read 1TB of data in 2 minutes

o

Hadoop Cluster

* Asetof "cheap" commodity hardware

® No need for super-computers, use commodity unreliable hardware

® Not desktops
e Networked together
° May reside in the same location

— Set of servers in a set of racks in a data center

client client client

= EATITEE w EITIITER v 1))
TR AN e TRATITES
==TRNTIIEE anes e
un m: i (111111
@ Hadoop Cluster

Scale-Out Instead of Scale-Up

* It is harder and more expensive to scale-up
® Add additional resources to an existing node (CPU, RAM)
® Moore’s Law can’t keep up with data growth
® New units must be purchased if required resources can not be added

® Also known as scale Vertically

e Scale-Out
® Add more nodes/machines to an existing distributed application
e Software layer is designed for node additions or removal

® Hadoop takes this approach - A set of nodes are bonded together as a
single distributed system

® Very easy to scale down as well

e
Code to Data

e Traditional data processing architecture

® Nodes are broken up into separate processing and storage nodes

connected by high—capacity link

* Many data-intensive applications are not CPU demanding

causing bottlenecks in network

_ Load Data
Processing Storage
Node Save Results . Node
1 Load Data _
Processing Storage

Node Save Results | Node

@ Risk of bottleneck

e

Code to Data

o Hadoop co-locates processors and storage

® Code is moved to data (size is tiny, usually in KBs)

® Processors execute code and access underlying local storage

e

Hadoop Cluster

Processor —‘

Storage
Hadoop Node

Frocessor —‘
- S.i: > -EIE_.-.
Hadoop Node

Processor
= —‘

~ Storage

Hadoop Node

Processor —‘
Storage

Hadoop Node

Failures are Commmon

* Given a large number machines, failures are

common
® Large warehouses may see machine failures Weekly or even daily
° Hadoop 1S designed to cope with node failures

® Data is replicated

® Tasks are retried

Comparison to RDBMS

e Relational Database Management Systems
(RDBMS) for batch processing

® Oracle, Sybase, MySQL, Microsoft SQL Server, etc.

® Hadoop doesn’t fully replace relational products; many
architectures would benefit from both Hadoop and a Relational

product
® RDBMS products scale up
Expensive to scale for larger installations
Hits a ceiling when storage reaches 100s of terabytes
e Structured Relational vs. Semi-Structured vs. Unstructured

° Hadoop was not designed for real-time or low latency queries

(-

HDFS

(Hadoop Distributed File System)

HDFS

* Appearsasa single disk
* Runs on top of a native filesystem

e FaultTolerant

® Can handle disk crashes, machine crashes, etc...

e Based on Google's Filesystem (GFS or GoogleFS)

HDFS is Good for...

* Storing large files

® Terabytes, Petabytes, etc...

e Millions rather than billions of files

® 100MB or more per file
* Streaming data

® Write once and read-many times patterns

® Optimized for streaming reads rather than random reads
* “Cheap” Commodity Hardware

® No need for super-computers, use less reliable commodity hardware

(-

HDFS is not so good for...

° Low-latency reads
° High—throughput rather than low 1atency for small chunks of data

e HBase addresses this issue
* Large amount of small files

® Better for millions of large files instead of billions of small files

For example each file can be 100MB or more
* Multiple Writers
° Single writer per file

® Writes only at the end of file, no-support for arbitrary offset

-

HDFS Daemons

Secondary
o Namenode
Management Management
Node Node
Datanode Datanode Datanode Datanode
Node 1 Node 2 Node 3 Node N

Files and Blocks

hamlet.txt file =
Block #1 (B1) + Block #2 (B2)

SAME BLOCK

B1 B2
B2 Bi

l
Datanode Datanode Datanode

\ Rack #1

Namenode

Management
Node

~B1 | B2

Datanode Datanode

Rack #N

(-

HDFS File Write

1 Namenode
Client »
. Management
Node
2
T
W

3 | 4

— iy

6 5
Datanode

el

=S

. Create new file in the Namenode's

™

Namespace; calculate block
topology

Stream data to the first Node
Stream data to the second node 1n
the pipeline

Stream data to the third node
Success/Tailure acknowledgment
Success/Failure acknowledgment
Success/Tailure acknowledgment

Datanode

éI:'.I:;ltEltﬂn::n:l«\a-
.

Source: White, Tomn. Hadoop The Definitive Guide. OF'Reilly Media. 2012 /

HDFS File Read

Namenode

Client —

Management
Mode

Datanode

o

Datanode

Datanode

[

Retrieve Block Locations
Read blocks to re-assemble
the file

Eead blocks to re-assemble
the file

Datanode

What is MapReduce?

Hadoop MapReduce

* Model for processing large amounts of data in
parallel
® On commodity hardware
® | ots of nodes
* Derived from functional programming
® Map and reduce functions
* Can be implemented in multiple languages
® Java, C++, Ruby, Python, etc.

Hadoop MapReduce History

[MapReduce 2.0/

YARN

|

|

Apache top-level project
Fastest sort of terabyte of data

|

[Lucene's sub-project]

[MapReduce paper l

-

—

2004

2006

2008

2012

(-

Main principle

®* Map: (f,[a,b,c, ...]) -> [{(a), f(b), f(c), ...]
* Apply a function to all the elements of a list
e ex.:map((f: x->x + 1), [1,2,3]) = [2, 3, 4]
* Intrinsically parallel

* Reduce: (g, [a,b,c,...])->g(a, g(b, g(c, ...)))

* Apply a function to a list recursively
® ex.: (sum, [1, 2,3 ,4]) = sum(1l, sum(2, sum(3,4)))

° Purely fonctionnal

® No global variables, no side effects

Input

WordCount example

The overall MapReduce word count process

Deer Bear River
Car Car River
Deer Car Bear

o

Final result

Splitting Mapping Shuffling Reducing
Bear, 1 ——w Bear, 2
Deer,1 ——m| Bear, 1
Deer Bear River ——w» Bear, 1
River, 1
Car, 1
Car,1 ———m Car,3 ——m
Car, 1 Car, 1
Car Car River ——w»= Car, 1
River, 1
Deer,1 ——w Deer,2 ————m
Deer, 1
Deer, 1
Deer Car Bear ——w Car, 1
Bear, 1 River, 1 ——=={ River, 2
River, 1

Bear, 2
Car, 3
Deer, 2
River, 2

MapReduce Framework

e Takes care of distributed processing and coordination

* Scheduling
® Jobs are broken down into smaller chunks called tasks.

® These tasks are scheduled.

e Task localization with Data

® Framework strives to place tasks on the nodes that host the

segment of data to be processed by that specific task

® Code is moved to where the data is

©

MapReduce Framework

® Error Handling
e Failures are an expected behavior so tasks are automatically re-tried
on other machines
e Data Synchronization

e Shuffle and Sort barrier re-arranges and moves data between

machines

® Input and output are coordinated by the framework

Map Reduce 2.0 on YARN

* Yet Another Resource Negotiator (YARN)

® Various applications can run on YARN
® MapReduce is just one choice (the main choice at this point)

® http:// Wiki.apache.org/ hadoop/ PoweredByYarn

YARN Cluster

[Nnde Manager

ModeM anager

T

0 ModeManager

I

Resource [
Manager

.

ModeManager

1

YARN: Running an Application

Application:
MyApp

h 4

(

Launch

Resource i -

Manager J§
\ U

NodeManager
NodeManager
NodeManager
Application
Master
NodeManager

YARN: Running an Application

Client

Application:
MyApp

Resource Request

(NodeManager

\

NodeM anager

[NodeManager

Resource f&

Manager §i#

S

Container IDs

Application
Master

NodeManager

YARN: Running an Application

Client

Application:
MyA pp

Ill,.l"

Manager E
< ii:

Resource fai

NodeManager
FN-DE}EMEHHEEF
MyApp
e
Launch
MNodeManager
Application
Master
Launch
NodeManager
W
MyApp

YARN: Running an Application

Client

Application:
MyApp

Application:
YourApp

Resource ff
Manager §i

rNocleManager
_
NodeM anager
7| Application
/ Master MyApp
\.
NodeManager
v
Application
Master
NodeManager
4
MyApp

Application;
Application: YourApp

YARN: Running an Application

NodeManager

YourApp

1

MyApp

NodeM knager

Application

l::: .

Manager

Master MyApp
NodeMtn ager
.
Application
YourApp A
NodeManager |

MyApp

YARN and MapReduce

® YARN does not know or care what kind of application it is

running

° MapReduce uses YARN

® Hadoop includes a MapReduce ApplicationMaster to manage
MapReduce jobs

e Fach MapReduce job is an instance of an application

MapReduce 2 NodeManager

[HRAppHastﬂr]

YARN
YARN AP|

Resource Management

Running a MapReduce2 Application

‘ NodeM anager Dmmde@ N ‘
NodeManager DataNode MR Job =g
1 | History [
Server i}
NodeManager DataNode ¢ ' Name
> Node(s) [T

<7k i
Resource [
Manager Jii
l NodeManager ['.latal*.h:n:leEE " ‘ J

- y

Running a MapReduce2 Application

-'7 hadoop jar wc.jar

History
Server

NodeM =
WordCount mydata output SRager DataNode
NodeManager DataNode & P
Block2
¥ o
a F\lodeManager DataNode & +
Resource Hi : L MRAGHMastes
Manager §i
_
NodeM anager DataNode 5. «

(

(. 2
MR Job [y

Running a MapReduce2 Ap

- hadoop jar wc.jar
WordCount mydata output

>

NodeManager DataNode &

f

Manager
<

Resource §gi o <—

Block1
NodeManager DataNode 1
Block2
Resource Request: -
-1xNodel/1GB/1 core by DataNode &
-1xNode2/1GB/1 core Hp
k MRAppMaster

NodeManager DataNode i

plication

(;.':‘
MR Job ey
History 8"
Server [if

Running a MapReduce2 Appllcatlon

B DACAOD L IRX M. IAK NodeManager
' WordCount mydata output € DataNOde
—__— Block1
\ .
= ’ _oa
NodeManager DataNode |
)
i Block2
l"
ooy oo,
v P g2
& queManager DataNode ¢
Resource ffF | i MRAppMaster
Manager ‘ | "Here are your containers” |
& -
NodeManager DataNode & 4

MR Job iyl

History
Server

Running a MapReduce2 Application

| - hadoop jar wc.jar
WordCount mydata output

NodeManager DataNode [4

WordCount Block1
Map Task
'\\
£
fNodeManaé% MR Job f=yy
> | WordCount History
Map Task \ Server i}
2 "\\ \ _
v e
((NodeManager NataNodes--q | | ~ e
Resource fiF ° < " | Node(s)
Manager C .
& : -
NodeManager DataNode . |

Running a MapReduce2 Ap

7 hadoop jar wc. jar

WordCount mydata output

Client

San
NodeManager DataNode
WordCount Block1
Map Task
NodeManager DataNode f .
WordCount Block2
Map Task

Resource Request: r
-2 x */1GB/1 core

Manager §i

\

NodeManager

DataNode i +

plication

History
Server

(

g
MR Job [=

Running a MapReduce2 Appllcatlon

© hadoop jar wc. jar

WordCount mydata output

Client

(

Resource } I
Manager

-

-
MR Job =

History
Server

(NodeManager DataNode
— Block1
%
fNodeManager DataNode . |
L. i
NodeManagér DataNode & &
e MRAppMaster
o » >
Here are your containers
DataNode - ¢

(N odeih‘angger

L o

Running a MapReduce2 Application

=

NodeManager DataNodel

© hadoop jar wc. jar
WordCount mydata output

Block1

Client

fNodeManager DataNode s
WordCount
Reduce Task
o
A 4 ("N
(& NodeManager DFtaNode
Resource fi MRAppMaster
Manager §i -
N
NodeManager taNode
WordCount i}
Reduce Task

Running a MapReduce2 Application

‘ 7 hadoop jar wc. jar

NodeManager
WordCount mydata output b DataNOdEl@
Client l

fNodeManager DataNode .
WordCount
Reduce Task
.
(NodeManager DataNode
- “I'mdonel” MRAppMaster
.
NodeManager DataNode .
WordCount
Reduce Task

Image Coaddition with
MapReduce

e

What is Astronomical Survey Science
from Big Data point of view ?

Gather millions of images and TBs/PBs of storage.
Require high—throughput data reduction pipelines.
Require sophisticated off-line data analysis tools

The following example is extracted from

Wiley K., Connolly A., Gardner ., Krughoff S., Balazinska M., Howe B., Kwon
Y., BuY.
Astronomy in the Cloud: Using MapReduce for Image Co-Addition.

Publications of the Astronomical Society of the Pacitic,

2011, vol. 123, no. 901, pp. 366-380.

4 ™
FITS (Flexible Image Transport System)

® Animage format that knows where it is looking.

e Common astronomical image representation file format.

® Metadata tags (like EXIF):
® Most importantly: Precise astrometry (position on sky)
® Other:

® Geolocation (telescope location)

® Sky conditions, image quality, etc.

Image Coaddition

* (Give multiple partially overlapping images and a query
(color and sky bounds):
e Find images’ intersections with the query bounds.

® Project bitmaps to the bounds.

® Stack and mosaic into a final product.

Image Stacking (Slgnal Averaging)

° Stackmg improves SNR: makes

fainter objects visible,

* Example (SDSS, Stripe 82):
® Top: Single image, R-band

® Bottom: 79-deep stack (~9x
SNR improvement)

® Variable conditions (e.g.,
atmosphere, PSF, haze) mean

stacking algorithm complexity

@ can exceed a mere sum.

.

Advantages of MapReduce

° High—level problem description. No effort spent on

internode communication, message-passing, etc.

® Programmed in Java (accessible to most science researchers,

not just computer scientists and engineers).

® Runs on cheap commodity hardware, potentially in the

cloud, e.g., Amazon’s EC2.
e Scalable: 1000s of nodes can be added to the cluster with no

modification to the researcher’s software.

® Large community of users/ support.

Coaddition in Hadoop

Input FITS image

/

———-;.[Mapper j___-a-

4 ™

Mapper
Detect
intersection with
query bounds.

Project bitmap to

,\E]uery’s coord sys;j

\[Mapper

Mapper

Parallel
by image

H-

N\

Projected

intersection

-

k

Reducer

~,

Stack and mosaic
projected
intersections.

S

Parallel
by query

Final coadd

+.

What is NoSQL?

What is NoSQL?

¢ Stands for Not Only SQL
e (lass of non-relational data storage systems

° Usually do not require a fixed table schema nor do they use the

concept of joins

* All NoSQL offerings relax one or more of the ACID properties
(CAP theorem)

* For data storage, an RDBMS cannot be the be-all/end-all

® Just as there are different programming languages, need to have

other data storage tools in the toolbox

* A NoSQL solution is more acceptable to a client now

e
The CAP Theorem

Theorem: You can have at most
two of these properties for any
shared-data system

The CAP Theorem

® Once a writer has written, all

readers will see that write

Consistency

e Two kinds of consistency:

® strong consistency — ACID (Atomicity Consistency
[solation Durability)

® weak consistency — BASE (Basically Available Soft-state
Eventual consistency)
Basically Available: The database system always seems to work!
Soft State: It does not have to be consistent all the time.

Eventually Consistent: The system will eventually become
consistent when the updates propagate, in particular, when there

are not too many updates.

e

The CAP Theorem

System is available during
software and hardware upgrades

and node failures.

Avalilability

® A guarantee that every request receives a response about whether

it succeeded or failed.

* Traditionally, thought of as the server/process available five 9’s

(99.999 %).

* However, for large node system, at almost any point in time
there’s a good chance that a node is either down or there is a

network disruption among the nodes.

(- y

The CAP Theorem

A system can continue to

operate in the presence of a

Availability network partitions.

Consistency

Partition

tolerance

Failure 1s the rule

® Amazon:

® Datacenter with 100 000 disks

® From 6 000 to 10 000 disks fail over per year (25
disks per day)

® Sources of failures are numerous:
® Hardware (disk)
® Network
® Power
® Software

® Software and OS updates.

The CAP Theorem

CAP Theorem

Consistency

g

CA CP

Availability Partition
AP Tolerance

CouchDB
Cassandra
DynamoDB

Riak

e
Different Types of NoSQL Systems

* Distributed Key-Value Systems - Lookup a single value for a key

* Amazon’s Dynamo

* Document-based Systems - Access data by key or by search of “document” data.
* CouchDB

o MongoDB

* Column-based Systems
. Google’s BigTable
* HBase

* TFacebook’s Cassandra

* Graph-based Systems - Use a graph structure
. Google’s Pregel
* Neo4j

@ Use different types for different types of applications

e
Key-Value Pair (KVP) Stores

“Value” is stored as a “blob”
e Without caring or knowing what is inside

* Application is responsible for understanding the data

In simple terms, a NoSQL Key-Value store is a single table with two columns: one

being the (Primary) Key, and the other being the Value.

Example of unstructured data for user records

Key: | ID:sj | First Name: Sam
|

Key: | Email: Location: Age:
2 jb@gmail.com London 37
Key: | Facebook Password: Name:

3 ID: jkirk XXX James

Each record may have a different schema

e

Document storage

Records within a single table can have different structures.
An example record from Mongo, using JSON format, might look like

{

“_id” : Objectld(“4fccbf281168a6aa3c215443"),

“first_name” : “Thomas”

5

“last_name” : “Jefterson”,

“address” : { -
“street” : “1600 Pennsylvania Ave NW”,
“city” : “Washington”,
“state” : “DC” —

— Embedded object

j
j

Records are called documents.
You can also modify the structure of any document on the ﬂy by adding and removing
members from the document.

Unlike simple key-value stores, both keys and values are fully searchable in document

@ databases.

Column-based Stores

* Based on Google’s BigTable store:
* Eachrecord = (row:string, column:string, time:int64)
* Distributed data storage, especially versioned data (time-stamps).
* Whatis a column-based store? - Data tables are stored as sections of

columns of data, rather than as rows of data.

row-store column-store

Date |Store [Product |Customer| Price M M m @

—— RRR

+ easy to add/modify a record + only need to read in relevant data
- might read in unnecessary data - tuple writes require multiple accesses
\a => suitable for read-mostly, read-intensive, large data repositories

_/

4 ™
Graph Database

. Apply graph theory in the storage of information about the relationship

between entries

* A graph database is a database that uses graph structures with nodes,

edges, and properties to represent and store data.

* In general, graph databases are useful when you are more interested in
relationships between data than in the data itself:

* for example, in representing and traversing social networks,

generating recommendations, or conducting forensic investigations

(e.g. pattern detection).

/

Example

What is Pig?

Pig
¢ In brief:
“is a platform for analyzing large data sets that consists of a high—level

language for expressing data analysis programs, coupled with infrastructure
for evaluating these programs.”

* Top Level Apache Project

° Pig 1s an abstraction on top of Hadoop
® Provides high level programming language designed for data processing
® Converted into MapReduce and executed on Hadoop Clusters

* Pigis widely accepted and used
® Yahoo!, Twitter, Netflix, etc...
® AtYahoo!, 70% MapReduce jobs are written in Pig

@

http://pig.apache.org/
http://pig.apache.org/
http://pig.apache.org/

4 ™
Disadvantages of Raw MapRaduce

1. Extremely rigid data flow W

Other flows constantly hacked in

0000

Join, Union Split Chains

2. Common operations must be coded by hand

* Join, filter, projection, aggregates, sorting, distinct

3. Semantics hidden inside map—reduce functions

* Difficult to maintain, extend, and optimize

@ * Resulting code is difficult to reuse and maintain; shifts focus and attention away
K from data analysis /

Pig and MapReduce

® MaPReduce reqUil"eS progl‘ammers
® Must think in terms of map and reduce functions
® More than likely will require Java programmers
* Pig provides high-level language that can be used by
® Analysts
® Data Scientists
® Statisticians
® Ltc...

° Originally implemented at Yahoo! to allow analysts to
access data

(-

e
Pig’'s Features

® Main operators:
® Join Datasets

® Sort Datasets

e Flter

® Data'Types

® Group By

e User Defined Functions

® Etc..

* Example:
>movies = LOAD '/home/movies_data.csv' USING PigStorage(',") as

(id,name,year,rating,duration);

>movies_greater_than_four = FILTER movies BY (tloat)rating>4.0;
>DUMP movies_greater_than_four;

o

What is Hive?

Hive
® Data Warehousing Solution built on top of Hadoop
® Provides SQL-like query language named HiveQL

® Minimal learning curve for people with SQL expertise

® Data analysts are target audience

* Early Hive development work started at Facebook in 2007

© Today Hive is an Apache project under Hadoop
° http: // hive.apache.org

Advantages and Drawbacks

e Hive provides
° Ability to bring structure to various data formats

® Simple interface for ad hoc querying, analyzing and summarizing large
amounts of data

® Access to files on various data stores such as HDFS and Hbase

¢ Hive does not provide
® Hive does not provide low latency or realtime queries
* Even querying small amounts of data may take minutes

° Designed for scalability and ease-of-use rather than low latency
responses

(- y

Hive

* Translates HiveQL statements into a set of MapReduce Jobs which are

then executed on a Hadoop Cluster

™\ r
[) Execute on
Hadoop Cluster
*

HiveQL || Hive

e ' €

P Monitor/Report
\ \ J L

- 'l ” Hadoop

Client Machine Cluster

What is Spark?

2002

A Brief History: Spark

2004
MapReduce paper

2010
Spark paper

MapReduce @ Google

o

2006

2008
Hadoop Summit

Hadoop (@ Yahoo!

2014
Apache Spark top-level

4 ™
A general view of Spark

BlinkDB

Approximate
SQL

GraphX Spark R
Graph Ron Spark
Computation

Current programming models

e Current popular programming models for clusters transform

data ﬂowing from stable storage to stable storage

* E.g., MapReduce:

Input

—

— Output

Benefits of data flow: runtime can decide where to run tasks and can

automatically recover from failures

MapReduce I/0

HDFS HDFS HDFS HDFS
i read writei read writei
Input
result 1
result 2
result 3

Slow due to replication and disk 1/0O,

but necessary for fault tolerance
o v

Spark

* Acyclic data tflow is a powertful abstraction, but is not efficient for

applications that repeatedly reuse a Working set of data:
® [terative algorithms (many in machine learning)

® Interactive data mining tools (R, Excel, Python)

° Spark makes Working sets a first-class concept to efficiently

support these apps.

4 ™
Goal: Sharing at Memory Speed

one-time
processing

query 2

@ [10-100x faster than network/disk, but how to get FT?]
.

Resilient Distributed Dataset (RDD)

® Provide distributed memory abstractions for clusters to support apps

with Working sets.

® Retain the attractive properties of MapReduce:
® Fault tolerance (for crashes & stragglers)
® Data locality
® Scalability

Solution: augment data flow model with “resilient distributed
datasets” (RDDs)

e
Programming Model with RDD

® Resilient distributed datasets (RDDs)

® Immutable collections partitioned across cluster that can be rebuilt
if a partition is lost

® Created by transforming data in stable storage using data flow
operators (map, filter, group-by, ...)

® Can be cached across parallel operations

e Parallel operations on RDDs

® Reduce, collect, count, save, ...

e Restricted shared variables

o

® Accumulators, broadcast variables

4 N
Example: Logistic Regression

® (Goal: find best line separating two sets of points

random initial line

targs

s
Logistic Regression (SCALA Code)

val data =
spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (1 <- 1 to ITERATIONS) {
val gradient = data.map(p =>

p.X
).reduce(_ +)
w -= gradient

}

printin("Final w: " + w)

(1 / A+ exp(-p.y*(w dot p.x))) - 1) * p.y *

Conclusion

Conclusion

® Data storage needs are rapidly increasing

‘ Hadoop has become the de-facto standard for handling these

massive data sets.
® Storage of Big Data requires new storage models

‘ NoSQL solutions.

e Parallel processing of Big Data requires a new programming

paradigm
‘ MapReduce programming model.

* “Big data”is moving beyond one-passbatch jobs, to low-latency

apps that need datasharing
‘ Apache Spark is an alternative solution.

o

