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What is the Big Data 
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Big Data Definition 

 No single standard definition… 

 

“Big Data” is data whose scale, diversity, and complexity 

require new architecture, techniques, algorithms, and analytics 

to manage it and extract value and hidden knowledge from it… 
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Characteristics of Big Data:  

1-Scale (Volume) 

 Data Volume 
 44x increase from 2009 to 2020 
 From 0.8 zettabytes to 35zb 

 Data volume is increasing exponentially  
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Exponential increase in 

collected/generated data 



Characteristics of Big Data:  

2-Complexity (Variety) 

 Various formats, types, and structures 

 Text, numerical, images, audio, video, 
sequences, time series, social media 
data, multi-dim arrays, etc… 

 Static data vs. streaming data   

 A single application can be 
generating/collecting many types of 
data   
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To extract knowledge 

 all these types of data need to be linked together 



Characteristics of Big Data:  

3-Speed (Velocity) 

 Data is generated fast and need to be processed fast 

 Online Data Analytics 

 Late decisions  missing opportunities 

 Examples 
 E-Promotions: Based on your current location, your purchase history, what you like 

 send promotions right now for store next to you 

 

 Healthcare monitoring: sensors monitoring your activities and body   

     any abnormal measurements require immediate reaction 
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Some Make it 5V’s 

8 



What technology for Big Data? 
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Hadoop Origins 

 Apache Hadoop is a framework that allows for the 

distributed processing of large data sets accross clusters of 

commodity computers using a simple programming model. 

 Hadoop is an open-source implementation of Google 

MapReduce and Google File System (GFS). 

 Hadoop fulfills need of common infrastructure: 

 Efficient, reliable, easy to use, 

 Open Source, Apache License. 
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Hadoop Ecosystem (main elements) 
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Data Storage 

 Storage capacity has grown exponentially but read 
speed has not kept up 
 1990: 

 Store 1,400 MB 

 Transfer speed of 4.5MB/s 

 Read the entire drive in ~ 5 minutes 

 2010: 
 Store 1 TB 

 Transfer speed of 100MB/s 

 Read the entire drive in ~ 3 hours 

 Hadoop - 100 drives working at the same time can 
read 1TB of data in 2 minutes 
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Hadoop Cluster 

 A set of "cheap" commodity hardware 

 No need for super-computers, use commodity unreliable hardware 

 Not desktops 

 Networked together 

 May reside in the same location 

    – Set of servers in a set of racks in a data center 

16 



Scale-Out Instead of Scale-Up 
 It is harder and more expensive to scale-up 

 Add additional resources to an existing node (CPU, RAM) 

 Moore’s Law can’t keep up with data growth 

 New units must be purchased if required resources can not be added 

 Also known as scale vertically 

 Scale-Out 

 Add more nodes/machines to an existing distributed application 

 Software layer is designed for node additions or removal 

 Hadoop takes this approach - A set of nodes are bonded together as a 

single distributed system 

 Very easy to scale down as well 
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Code to Data 

 Traditional data processing architecture 

 Nodes are broken up into separate processing and storage nodes 

connected by high-capacity link 

 Many data-intensive applications are not CPU demanding 

causing bottlenecks in network 
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Code to Data 

 Hadoop co-locates processors and storage 

 Code is moved to data (size is tiny, usually in KBs) 

 Processors execute code and access underlying local storage 
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Failures are Common 

 Given a large number machines, failures are 

common 

 Large warehouses may see machine failures weekly or even daily 

 Hadoop is designed to cope with node failures 

 Data is replicated 

 Tasks are retried 
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Comparison to RDBMS 

 Relational Database Management Systems 

(RDBMS) for batch processing 

 Oracle, Sybase, MySQL, Microsoft SQL Server, etc. 

 Hadoop doesn’t fully replace relational products; many 

architectures would benefit from both Hadoop and a Relational 

product 

 RDBMS products scale up 

 Expensive to scale for larger installations 

 Hits a ceiling when storage reaches 100s of terabytes 

 Structured Relational vs. Semi-Structured vs. Unstructured 

 Hadoop was not designed for real-time or low latency queries 

 
21 



HDFS 

(Hadoop Distributed File System) 
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HDFS 

 Appears as a single disk 

 Runs on top of a native filesystem 

 Fault Tolerant 

 Can handle disk crashes, machine crashes, etc... 

 Based on Google's Filesystem (GFS or GoogleFS) 
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HDFS is Good for... 

 Storing large files 

 Terabytes, Petabytes, etc... 

 Millions rather than billions of files 

 100MB or more per file 

 Streaming data 

 Write once and read-many times patterns 

 Optimized for streaming reads rather than random reads 

 “Cheap” Commodity Hardware 

 No need for super-computers, use less reliable commodity hardware 
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HDFS is not so good for... 

 Low-latency reads 

 High-throughput rather than low latency for small chunks of data 

 HBase addresses this issue 

 Large amount of small files 

 Better for millions of large files instead of billions of small files 

 For example each file can be 100MB or more 

 Multiple Writers 

 Single writer per file 

 Writes only at the end of file, no-support for arbitrary offset 
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HDFS Daemons 
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Files and Blocks 
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HDFS File Write 
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HDFS File Read 
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What is MapReduce? 
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Hadoop MapReduce 

 Model for processing large amounts of data in 

parallel 

 On commodity hardware 

 Lots of nodes 

 Derived from functional programming 

 Map and reduce functions 

 Can be implemented in multiple languages 

 Java, C++, Ruby, Python, etc. 
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Hadoop MapReduce History 
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Main principle 
 

 Map: ( f, [a, b, c, ...]) -> [ f(a), f(b), f(c), ... ] 

 Apply a function to all the elements of a list 

 ex.: map((f: x->x + 1), [1, 2, 3]) = [2, 3, 4] 

 Intrinsically parallel 

 

 Reduce: ( g, [a, b, c, ...] ) -> g(a, g(b, g(c, ... ))) 

 Apply a function to a list recursively 

 ex.: (sum , [1, 2, 3 ,4]) = sum(1, sum( 2, sum( 3, 4 )  ) ) 

 

 Purely fonctionnal 

 No global variables, no side effects 
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WordCount example 
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MapReduce Framework 
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 Takes care of distributed processing and coordination 

 Scheduling 

 Jobs are broken down into smaller chunks called tasks.  

 These tasks are scheduled. 

 Task localization with Data 

 Framework strives to place tasks on the nodes that host the 

segment of data to be processed by that specific task 

 Code is moved to where the data is 



MapReduce Framework 
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 Error Handling 

 Failures are an expected behavior so tasks are automatically re-tried 

on other machines 

 Data Synchronization 

 Shuffle and Sort barrier re-arranges and moves data between 

machines 

 Input and output are coordinated by the framework 



Map Reduce 2.0 on YARN 

 Yet Another Resource Negotiator (YARN) 

 Various applications can run on YARN 

 MapReduce is just one choice (the main choice at this point) 

 http://wiki.apache.org/hadoop/PoweredByYarn 
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YARN Cluster 
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YARN: Running an Application 
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YARN: Running an Application 
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YARN: Running an Application 
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YARN: Running an Application 
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YARN: Running an Application 
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YARN and MapReduce 

 YARN does not know or care what kind of application it is 

running 

 MapReduce uses YARN 

 Hadoop includes a MapReduce ApplicationMaster to manage 

MapReduce jobs 

 Each MapReduce job is an instance of an application 
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Running a MapReduce2 Application 
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Running a MapReduce2 Application 
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Running a MapReduce2 Application 
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Running a MapReduce2 Application 
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Running a MapReduce2 Application 
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Running a MapReduce2 Application 
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Running a MapReduce2 Application 
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Running a MapReduce2 Application 
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Running a MapReduce2 Application 
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Image Coaddition with 

MapReduce 
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What is Astronomical Survey Science 

from Big Data point of view ? 
 

 Gather millions of images and TBs/PBs of storage. 

 Require high-throughput data reduction pipelines. 

 Require sophisticated off-line data analysis tools 

 The following example is extracted from 
Wiley K., Connolly A., Gardner J., Krughoff S., Balazinska M., Howe B., Kwon 

Y., Bu Y.  

Astronomy in the Cloud: Using MapReduce for Image Co-Addition. 

Publications of the Astronomical Society of the Pacific,  

2011, vol. 123, no. 901, pp. 366-380.  
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FITS (Flexible Image Transport System) 

 An image format that knows where it is looking. 

 Common astronomical image representation file format. 

 Metadata tags (like EXIF): 

 Most importantly: Precise astrometry (position on sky) 

 Other: 

 Geolocation (telescope location) 

 Sky conditions, image quality, etc. 
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Image Coaddition 

 Give multiple partially overlapping images and a query 

(color and sky bounds): 

 Find images’ intersections with the query bounds. 

 Project bitmaps to the bounds. 

 Stack and mosaic into a final product. 
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Image Stacking (Signal Averaging) 
 Stacking improves SNR: makes 

fainter objects visible. 

 

 Example (SDSS, Stripe 82): 

 Top: Single image, R-band 

 Bottom: 79-deep stack (~9x 

SNR improvement) 

 

 Variable conditions (e.g., 

atmosphere, PSF, haze) mean 

stacking algorithm complexity 

can exceed a mere sum. 
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Advantages of MapReduce 

 High-level problem description. No effort spent on 

internode communication, message-passing, etc. 

 Programmed in Java (accessible to most science researchers, 

not just computer scientists and engineers). 

 Runs on cheap commodity hardware, potentially in the 

cloud, e.g., Amazon’s EC2. 

 Scalable: 1000s of nodes can be added to the cluster with no 

modification to the researcher’s software. 

 Large community of users/support. 
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Coaddition in Hadoop 
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What is NoSQL? 
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What is NoSQL? 
 Stands for Not Only SQL 

 Class of non-relational data storage systems 

 Usually do not require a fixed table schema nor do they use the 

concept of joins 

 All NoSQL offerings relax one or more of the ACID properties 

(CAP theorem) 

 For data storage, an RDBMS cannot be the be-all/end-all 

 Just as there are different programming languages, need to have 

other data storage tools in the toolbox 

 A NoSQL solution is more acceptable to a client now 
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The CAP Theorem 

   Theorem: You can have at most 

two of these properties for any 

shared-data system 

 

Consistency 

Partition 

tolerance 

Availability 
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The CAP Theorem 
 Once a writer has written, all 

readers will see that write 

Consistency 

Partition 

tolerance 

Availability 
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Consistency 

 Two kinds of consistency: 

 strong consistency – ACID (Atomicity Consistency 

Isolation Durability) 

 weak consistency – BASE (Basically Available Soft-state 

Eventual consistency)  

• Basically Available: The database system always seems to work!  

• Soft State: It does not have to be consistent all the time. 

• Eventually Consistent: The system will eventually become 

consistent when the updates propagate, in particular, when there 

are not too many updates. 
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The CAP Theorem 

   System is available during 

software and hardware upgrades 

and node failures. 

Consistency 

Partition 

tolerance 

Availability 
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Availability 

 A guarantee that every request receives a response about whether 

it succeeded or failed. 

 Traditionally, thought of as the server/process available five 9’s 

(99.999 %). 

 However, for large node system, at almost any point in time 

there’s a good chance that a node is either down or there is a 

network disruption among the nodes.  
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The CAP Theorem 

   A system can continue to 

operate in the presence of a 

network partitions. 

Consistency 

Partition 

tolerance 

Availability 
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Failure is the rule 

 Amazon: 

 Datacenter with 100 000 disks 

 From 6 000 to 10 000 disks fail over per year  (25 

disks per day) 

 Sources of failures are numerous: 

 Hardware (disk) 

 Network 

 Power 

 Software 

 Software and OS updates. 
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The CAP Theorem 
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• Distributed Key-Value Systems - Lookup a single value for a key  

• Amazon’s  Dynamo 

 

• Document-based Systems - Access data by key or by search of “document” data.  

• CouchDB 

• MongoDB 

 

• Column-based Systems 

• Google’s BigTable 

• HBase 

• Facebook’s Cassandra 

 

• Graph-based Systems - Use a graph structure 

• Google’s Pregel 

• Neo4j 
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Different Types of NoSQL Systems 



“Value” is stored as a “blob” 

•  Without caring or knowing what is inside 

• Application is responsible for understanding the data  

In simple terms, a NoSQL Key-Value store is a single table with two columns: one 

being the (Primary) Key, and the other being the Value.  

Each record may have a different schema 72 

Key-Value Pair (KVP) Stores 

 



 

 

• Records within a single table can have different structures. 

• An example record from Mongo, using JSON format, might look like 

{ 

“_id” : ObjectId(“4fccbf281168a6aa3c215443″), 

 

“first_name” : “Thomas”, 

“last_name” : “Jefferson”, 

“address” : { 

 “street” : “1600 Pennsylvania Ave NW”, 

 “city” : “Washington”, 

 “state” : “DC” 

} 

} 

Embedded object 

• Records are called documents.  

• You can also modify the structure of any document on the fly by adding and removing 

members from the document. 

• Unlike simple key-value stores, both keys and values are fully searchable in document 

databases. 
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Document storage 



• Based on Google’s BigTable store:  

• Each record = (row:string, column:string, time:int64)  

• Distributed data storage, especially versioned data (time-stamps).  

• What is a column-based store? - Data tables are stored as sections of 

columns of data, rather than as rows of data. 
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Column-based Stores 



• Apply graph theory in the storage of information about the relationship 

between entries 

• A graph database is a database that uses graph structures with nodes, 

edges, and properties to represent and store data.  

 

• In general, graph databases are useful when you are more interested in 

relationships between data than in the data itself:  

• for example, in representing and traversing social networks, 

generating recommendations, or conducting forensic investigations 

(e.g. pattern detection).  
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Graph Database 
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Example 



What is Pig? 

77 



Pig 
 In brief: 

“is a platform for analyzing large data sets that consists of a high-level 
language for expressing data analysis programs, coupled with infrastructure 
for evaluating these programs.” 

 

 Top Level Apache Project 
 http://pig.apache.org 

 

 Pig is an abstraction on top of Hadoop 
 Provides high level programming language designed for data processing 
 Converted into MapReduce and executed on Hadoop Clusters 

 

 Pig is widely accepted and used 
 Yahoo!, Twitter, Netflix, etc... 
 At Yahoo!, 70% MapReduce jobs are written in Pig 
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Disadvantages of Raw MapRaduce 

1. Extremely rigid data flow 

Other flows constantly hacked in 

Join, Union Split 

M R 

M M R M 

Chains 

2. Common operations must be coded by hand 

• Join, filter, projection, aggregates, sorting, distinct 

3. Semantics hidden inside map-reduce functions 

• Difficult to maintain, extend, and optimize 

• Resulting code is difficult to reuse and maintain; shifts focus and attention away 

from data analysis 
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Pig and MapReduce 

 MapReduce requires programmers 

 Must think in terms of map and reduce functions 

 More than likely will require Java programmers 

 Pig provides high-level language that can be used by 

 Analysts 

 Data Scientists 

 Statisticians 

 Etc... 

 Originally implemented at Yahoo! to allow analysts to 

access data 
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Pig’s Features 

 Main operators: 
 Join Datasets 
 Sort Datasets 
 Filter 
 Data Types 
 Group By 
 User Defined Functions 
 Etc.. 

 

 Example: 
>movies = LOAD '/home/movies_data.csv' USING PigStorage(',') as    
                   (id,name,year,rating,duration); 
>movies_greater_than_four = FILTER movies BY (float)rating>4.0;  
>DUMP movies_greater_than_four; 
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What is Hive? 
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Hive 

 Data Warehousing Solution built on top of Hadoop 

 Provides SQL-like query language named HiveQL 

 Minimal learning curve for people with SQL expertise 

 Data analysts are target audience 

 Early Hive development work started at Facebook in 2007 

 Today Hive is an Apache project under Hadoop 

 http://hive.apache.org 
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Advantages and Drawbacks 

 Hive provides 

 Ability to bring structure to various data formats 

 Simple interface for ad hoc querying, analyzing and summarizing large 
amounts of data 

 Access to files on various data stores such as HDFS and Hbase 

 

 Hive does not provide 

 Hive does not provide low latency or realtime queries 

 Even querying small amounts of data may take minutes 

 Designed for scalability and ease-of-use rather than low latency 
responses 
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Hive 

 Translates HiveQL statements into a set of MapReduce Jobs which are 

then executed on a Hadoop Cluster 
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What is Spark? 

86 



A Brief History: Spark 
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A general view of Spark 
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Current programming models 

Map 

Map 

Map 

Reduce 

Reduce 

Input Output 

Benefits of data flow: runtime can decide where to run tasks and can 

automatically recover from failures 

 Current popular programming models for clusters transform 

data flowing from stable storage to stable storage 

 E.g., MapReduce: 
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MapReduce I/O 
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Spark 

 Acyclic data flow is a powerful abstraction, but is not efficient for 

applications that repeatedly reuse a working set of data: 

 Iterative algorithms (many in machine learning) 

 Interactive data mining tools (R, Excel, Python) 

 

 Spark makes working sets a first-class concept to efficiently 

support these apps. 
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Goal: Sharing at Memory Speed 
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Resilient Distributed Dataset (RDD) 

 

 Provide distributed memory abstractions for clusters to support apps 

with working sets. 

 

 Retain the attractive properties of MapReduce: 

 Fault tolerance (for crashes & stragglers) 

 Data locality 

 Scalability 

Solution: augment data flow model with “resilient distributed 

datasets” (RDDs) 
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Programming Model with RDD 

 Resilient distributed datasets (RDDs) 

 Immutable collections partitioned across cluster that can be rebuilt 
if a partition is lost 

 Created by transforming data in stable storage using data flow 
operators (map, filter, group-by, …) 

 Can be cached across parallel operations 

 

 Parallel operations on RDDs 

 Reduce, collect, count, save, … 

 

 Restricted shared variables 

 Accumulators, broadcast variables 
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Example: Logistic Regression 

 Goal: find best line separating two sets of points 

target 

random initial line 
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Logistic Regression (SCALA Code) 

val data = 
spark.textFile(...).map(readPoint).cache() 
 
var w = Vector.random(D) 
 
for (i <- 1 to ITERATIONS) { 
  val gradient = data.map(p => 
    (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * 
p.x 
  ).reduce(_ + _) 
  w -= gradient 
} 
 
println("Final w: " + w) 
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Conclusion 
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Conclusion 
 Data storage needs are rapidly increasing 

 Hadoop has become the de-facto standard for handling these 

massive data sets. 

 Storage of Big Data requires new storage models 

 NoSQL solutions. 

 Parallel processing of Big Data requires a new programming 

paradigm 

   MapReduce programming model. 

  “Big data” is moving beyond one-passbatch  jobs, to low-latency 

apps that need datasharing 

 Apache Spark is an alternative solution. 
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