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What is the Big Data 
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Big Data Definition 

 No single standard definition… 

 

“Big Data” is data whose scale, diversity, and complexity 

require new architecture, techniques, algorithms, and analytics 

to manage it and extract value and hidden knowledge from it… 
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Characteristics of Big Data:  

1-Scale (Volume) 

 Data Volume 
 44x increase from 2009 to 2020 
 From 0.8 zettabytes to 35zb 

 Data volume is increasing exponentially  
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Exponential increase in 

collected/generated data 



Characteristics of Big Data:  

2-Complexity (Variety) 

 Various formats, types, and structures 

 Text, numerical, images, audio, video, 
sequences, time series, social media 
data, multi-dim arrays, etc… 

 Static data vs. streaming data   

 A single application can be 
generating/collecting many types of 
data   

 

6 

To extract knowledge 

 all these types of data need to be linked together 



Characteristics of Big Data:  

3-Speed (Velocity) 

 Data is generated fast and need to be processed fast 

 Online Data Analytics 

 Late decisions  missing opportunities 

 Examples 
 E-Promotions: Based on your current location, your purchase history, what you like 

 send promotions right now for store next to you 

 

 Healthcare monitoring: sensors monitoring your activities and body   

     any abnormal measurements require immediate reaction 
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Some Make it 5V’s 
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What technology for Big Data? 
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Hadoop Origins 

 Apache Hadoop is a framework that allows for the 

distributed processing of large data sets accross clusters of 

commodity computers using a simple programming model. 

 Hadoop is an open-source implementation of Google 

MapReduce and Google File System (GFS). 

 Hadoop fulfills need of common infrastructure: 

 Efficient, reliable, easy to use, 

 Open Source, Apache License. 
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Hadoop Ecosystem (main elements) 
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Data Storage 

 Storage capacity has grown exponentially but read 
speed has not kept up 
 1990: 

 Store 1,400 MB 

 Transfer speed of 4.5MB/s 

 Read the entire drive in ~ 5 minutes 

 2010: 
 Store 1 TB 

 Transfer speed of 100MB/s 

 Read the entire drive in ~ 3 hours 

 Hadoop - 100 drives working at the same time can 
read 1TB of data in 2 minutes 
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Hadoop Cluster 

 A set of "cheap" commodity hardware 

 No need for super-computers, use commodity unreliable hardware 

 Not desktops 

 Networked together 

 May reside in the same location 

    – Set of servers in a set of racks in a data center 
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Scale-Out Instead of Scale-Up 
 It is harder and more expensive to scale-up 

 Add additional resources to an existing node (CPU, RAM) 

 Moore’s Law can’t keep up with data growth 

 New units must be purchased if required resources can not be added 

 Also known as scale vertically 

 Scale-Out 

 Add more nodes/machines to an existing distributed application 

 Software layer is designed for node additions or removal 

 Hadoop takes this approach - A set of nodes are bonded together as a 

single distributed system 

 Very easy to scale down as well 
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Code to Data 

 Traditional data processing architecture 

 Nodes are broken up into separate processing and storage nodes 

connected by high-capacity link 

 Many data-intensive applications are not CPU demanding 

causing bottlenecks in network 
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Code to Data 

 Hadoop co-locates processors and storage 

 Code is moved to data (size is tiny, usually in KBs) 

 Processors execute code and access underlying local storage 
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Failures are Common 

 Given a large number machines, failures are 

common 

 Large warehouses may see machine failures weekly or even daily 

 Hadoop is designed to cope with node failures 

 Data is replicated 

 Tasks are retried 
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Comparison to RDBMS 

 Relational Database Management Systems 

(RDBMS) for batch processing 

 Oracle, Sybase, MySQL, Microsoft SQL Server, etc. 

 Hadoop doesn’t fully replace relational products; many 

architectures would benefit from both Hadoop and a Relational 

product 

 RDBMS products scale up 

 Expensive to scale for larger installations 

 Hits a ceiling when storage reaches 100s of terabytes 

 Structured Relational vs. Semi-Structured vs. Unstructured 

 Hadoop was not designed for real-time or low latency queries 
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HDFS 

(Hadoop Distributed File System) 
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HDFS 

 Appears as a single disk 

 Runs on top of a native filesystem 

 Fault Tolerant 

 Can handle disk crashes, machine crashes, etc... 

 Based on Google's Filesystem (GFS or GoogleFS) 
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HDFS is Good for... 

 Storing large files 

 Terabytes, Petabytes, etc... 

 Millions rather than billions of files 

 100MB or more per file 

 Streaming data 

 Write once and read-many times patterns 

 Optimized for streaming reads rather than random reads 

 “Cheap” Commodity Hardware 

 No need for super-computers, use less reliable commodity hardware 
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HDFS is not so good for... 

 Low-latency reads 

 High-throughput rather than low latency for small chunks of data 

 HBase addresses this issue 

 Large amount of small files 

 Better for millions of large files instead of billions of small files 

 For example each file can be 100MB or more 

 Multiple Writers 

 Single writer per file 

 Writes only at the end of file, no-support for arbitrary offset 
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HDFS Daemons 
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Files and Blocks 
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HDFS File Write 
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HDFS File Read 
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What is MapReduce? 
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Hadoop MapReduce 

 Model for processing large amounts of data in 

parallel 

 On commodity hardware 

 Lots of nodes 

 Derived from functional programming 

 Map and reduce functions 

 Can be implemented in multiple languages 

 Java, C++, Ruby, Python, etc. 
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Hadoop MapReduce History 
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Main principle 
 

 Map: ( f, [a, b, c, ...]) -> [ f(a), f(b), f(c), ... ] 

 Apply a function to all the elements of a list 

 ex.: map((f: x->x + 1), [1, 2, 3]) = [2, 3, 4] 

 Intrinsically parallel 

 

 Reduce: ( g, [a, b, c, ...] ) -> g(a, g(b, g(c, ... ))) 

 Apply a function to a list recursively 

 ex.: (sum , [1, 2, 3 ,4]) = sum(1, sum( 2, sum( 3, 4 )  ) ) 

 

 Purely fonctionnal 

 No global variables, no side effects 
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WordCount example 
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MapReduce Framework 
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 Takes care of distributed processing and coordination 

 Scheduling 

 Jobs are broken down into smaller chunks called tasks.  

 These tasks are scheduled. 

 Task localization with Data 

 Framework strives to place tasks on the nodes that host the 

segment of data to be processed by that specific task 

 Code is moved to where the data is 



MapReduce Framework 
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 Error Handling 

 Failures are an expected behavior so tasks are automatically re-tried 

on other machines 

 Data Synchronization 

 Shuffle and Sort barrier re-arranges and moves data between 

machines 

 Input and output are coordinated by the framework 



Map Reduce 2.0 on YARN 

 Yet Another Resource Negotiator (YARN) 

 Various applications can run on YARN 

 MapReduce is just one choice (the main choice at this point) 

 http://wiki.apache.org/hadoop/PoweredByYarn 
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YARN Cluster 
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YARN: Running an Application 
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YARN: Running an Application 

 

40 



YARN: Running an Application 
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YARN: Running an Application 
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YARN: Running an Application 
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YARN and MapReduce 

 YARN does not know or care what kind of application it is 

running 

 MapReduce uses YARN 

 Hadoop includes a MapReduce ApplicationMaster to manage 

MapReduce jobs 

 Each MapReduce job is an instance of an application 
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Running a MapReduce2 Application 

45 



Running a MapReduce2 Application 

46 



Running a MapReduce2 Application 
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Running a MapReduce2 Application 
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Running a MapReduce2 Application 
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Running a MapReduce2 Application 
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Running a MapReduce2 Application 
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Running a MapReduce2 Application 
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Running a MapReduce2 Application 
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Image Coaddition with 

MapReduce 
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What is Astronomical Survey Science 

from Big Data point of view ? 
 

 Gather millions of images and TBs/PBs of storage. 

 Require high-throughput data reduction pipelines. 

 Require sophisticated off-line data analysis tools 

 The following example is extracted from 
Wiley K., Connolly A., Gardner J., Krughoff S., Balazinska M., Howe B., Kwon 

Y., Bu Y.  

Astronomy in the Cloud: Using MapReduce for Image Co-Addition. 

Publications of the Astronomical Society of the Pacific,  

2011, vol. 123, no. 901, pp. 366-380.  
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FITS (Flexible Image Transport System) 

 An image format that knows where it is looking. 

 Common astronomical image representation file format. 

 Metadata tags (like EXIF): 

 Most importantly: Precise astrometry (position on sky) 

 Other: 

 Geolocation (telescope location) 

 Sky conditions, image quality, etc. 
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Image Coaddition 

 Give multiple partially overlapping images and a query 

(color and sky bounds): 

 Find images’ intersections with the query bounds. 

 Project bitmaps to the bounds. 

 Stack and mosaic into a final product. 
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Image Stacking (Signal Averaging) 
 Stacking improves SNR: makes 

fainter objects visible. 

 

 Example (SDSS, Stripe 82): 

 Top: Single image, R-band 

 Bottom: 79-deep stack (~9x 

SNR improvement) 

 

 Variable conditions (e.g., 

atmosphere, PSF, haze) mean 

stacking algorithm complexity 

can exceed a mere sum. 
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Advantages of MapReduce 

 High-level problem description. No effort spent on 

internode communication, message-passing, etc. 

 Programmed in Java (accessible to most science researchers, 

not just computer scientists and engineers). 

 Runs on cheap commodity hardware, potentially in the 

cloud, e.g., Amazon’s EC2. 

 Scalable: 1000s of nodes can be added to the cluster with no 

modification to the researcher’s software. 

 Large community of users/support. 
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Coaddition in Hadoop 
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What is NoSQL? 
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What is NoSQL? 
 Stands for Not Only SQL 

 Class of non-relational data storage systems 

 Usually do not require a fixed table schema nor do they use the 

concept of joins 

 All NoSQL offerings relax one or more of the ACID properties 

(CAP theorem) 

 For data storage, an RDBMS cannot be the be-all/end-all 

 Just as there are different programming languages, need to have 

other data storage tools in the toolbox 

 A NoSQL solution is more acceptable to a client now 

 

62 



The CAP Theorem 

   Theorem: You can have at most 

two of these properties for any 

shared-data system 

 

Consistency 

Partition 

tolerance 

Availability 
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The CAP Theorem 
 Once a writer has written, all 

readers will see that write 

Consistency 

Partition 

tolerance 

Availability 
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Consistency 

 Two kinds of consistency: 

 strong consistency – ACID (Atomicity Consistency 

Isolation Durability) 

 weak consistency – BASE (Basically Available Soft-state 

Eventual consistency)  

• Basically Available: The database system always seems to work!  

• Soft State: It does not have to be consistent all the time. 

• Eventually Consistent: The system will eventually become 

consistent when the updates propagate, in particular, when there 

are not too many updates. 
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The CAP Theorem 

   System is available during 

software and hardware upgrades 

and node failures. 

Consistency 

Partition 

tolerance 

Availability 
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Availability 

 A guarantee that every request receives a response about whether 

it succeeded or failed. 

 Traditionally, thought of as the server/process available five 9’s 

(99.999 %). 

 However, for large node system, at almost any point in time 

there’s a good chance that a node is either down or there is a 

network disruption among the nodes.  
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The CAP Theorem 

   A system can continue to 

operate in the presence of a 

network partitions. 

Consistency 

Partition 

tolerance 

Availability 
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Failure is the rule 

 Amazon: 

 Datacenter with 100 000 disks 

 From 6 000 to 10 000 disks fail over per year  (25 

disks per day) 

 Sources of failures are numerous: 

 Hardware (disk) 

 Network 

 Power 

 Software 

 Software and OS updates. 
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The CAP Theorem 
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• Distributed Key-Value Systems - Lookup a single value for a key  

• Amazon’s  Dynamo 

 

• Document-based Systems - Access data by key or by search of “document” data.  

• CouchDB 

• MongoDB 

 

• Column-based Systems 

• Google’s BigTable 

• HBase 

• Facebook’s Cassandra 

 

• Graph-based Systems - Use a graph structure 

• Google’s Pregel 

• Neo4j 
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Different Types of NoSQL Systems 



“Value” is stored as a “blob” 

•  Without caring or knowing what is inside 

• Application is responsible for understanding the data  

In simple terms, a NoSQL Key-Value store is a single table with two columns: one 

being the (Primary) Key, and the other being the Value.  

Each record may have a different schema 72 

Key-Value Pair (KVP) Stores 

 



 

 

• Records within a single table can have different structures. 

• An example record from Mongo, using JSON format, might look like 

{ 

“_id” : ObjectId(“4fccbf281168a6aa3c215443″), 

 

“first_name” : “Thomas”, 

“last_name” : “Jefferson”, 

“address” : { 

 “street” : “1600 Pennsylvania Ave NW”, 

 “city” : “Washington”, 

 “state” : “DC” 

} 

} 

Embedded object 

• Records are called documents.  

• You can also modify the structure of any document on the fly by adding and removing 

members from the document. 

• Unlike simple key-value stores, both keys and values are fully searchable in document 

databases. 
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Document storage 



• Based on Google’s BigTable store:  

• Each record = (row:string, column:string, time:int64)  

• Distributed data storage, especially versioned data (time-stamps).  

• What is a column-based store? - Data tables are stored as sections of 

columns of data, rather than as rows of data. 
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Column-based Stores 



• Apply graph theory in the storage of information about the relationship 

between entries 

• A graph database is a database that uses graph structures with nodes, 

edges, and properties to represent and store data.  

 

• In general, graph databases are useful when you are more interested in 

relationships between data than in the data itself:  

• for example, in representing and traversing social networks, 

generating recommendations, or conducting forensic investigations 

(e.g. pattern detection).  

75 

Graph Database 
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Example 



What is Pig? 
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Pig 
 In brief: 

“is a platform for analyzing large data sets that consists of a high-level 
language for expressing data analysis programs, coupled with infrastructure 
for evaluating these programs.” 

 

 Top Level Apache Project 
 http://pig.apache.org 

 

 Pig is an abstraction on top of Hadoop 
 Provides high level programming language designed for data processing 
 Converted into MapReduce and executed on Hadoop Clusters 

 

 Pig is widely accepted and used 
 Yahoo!, Twitter, Netflix, etc... 
 At Yahoo!, 70% MapReduce jobs are written in Pig 
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Disadvantages of Raw MapRaduce 

1. Extremely rigid data flow 

Other flows constantly hacked in 

Join, Union Split 

M R 

M M R M 

Chains 

2. Common operations must be coded by hand 

• Join, filter, projection, aggregates, sorting, distinct 

3. Semantics hidden inside map-reduce functions 

• Difficult to maintain, extend, and optimize 

• Resulting code is difficult to reuse and maintain; shifts focus and attention away 

from data analysis 
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Pig and MapReduce 

 MapReduce requires programmers 

 Must think in terms of map and reduce functions 

 More than likely will require Java programmers 

 Pig provides high-level language that can be used by 

 Analysts 

 Data Scientists 

 Statisticians 

 Etc... 

 Originally implemented at Yahoo! to allow analysts to 

access data 
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Pig’s Features 

 Main operators: 
 Join Datasets 
 Sort Datasets 
 Filter 
 Data Types 
 Group By 
 User Defined Functions 
 Etc.. 

 

 Example: 
>movies = LOAD '/home/movies_data.csv' USING PigStorage(',') as    
                   (id,name,year,rating,duration); 
>movies_greater_than_four = FILTER movies BY (float)rating>4.0;  
>DUMP movies_greater_than_four; 
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What is Hive? 
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Hive 

 Data Warehousing Solution built on top of Hadoop 

 Provides SQL-like query language named HiveQL 

 Minimal learning curve for people with SQL expertise 

 Data analysts are target audience 

 Early Hive development work started at Facebook in 2007 

 Today Hive is an Apache project under Hadoop 

 http://hive.apache.org 
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Advantages and Drawbacks 

 Hive provides 

 Ability to bring structure to various data formats 

 Simple interface for ad hoc querying, analyzing and summarizing large 
amounts of data 

 Access to files on various data stores such as HDFS and Hbase 

 

 Hive does not provide 

 Hive does not provide low latency or realtime queries 

 Even querying small amounts of data may take minutes 

 Designed for scalability and ease-of-use rather than low latency 
responses 

 
84 



Hive 

 Translates HiveQL statements into a set of MapReduce Jobs which are 

then executed on a Hadoop Cluster 
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What is Spark? 
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A Brief History: Spark 
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A general view of Spark 
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Current programming models 

Map 

Map 

Map 

Reduce 

Reduce 

Input Output 

Benefits of data flow: runtime can decide where to run tasks and can 

automatically recover from failures 

 Current popular programming models for clusters transform 

data flowing from stable storage to stable storage 

 E.g., MapReduce: 
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MapReduce I/O 
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Spark 

 Acyclic data flow is a powerful abstraction, but is not efficient for 

applications that repeatedly reuse a working set of data: 

 Iterative algorithms (many in machine learning) 

 Interactive data mining tools (R, Excel, Python) 

 

 Spark makes working sets a first-class concept to efficiently 

support these apps. 
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Goal: Sharing at Memory Speed 
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Resilient Distributed Dataset (RDD) 

 

 Provide distributed memory abstractions for clusters to support apps 

with working sets. 

 

 Retain the attractive properties of MapReduce: 

 Fault tolerance (for crashes & stragglers) 

 Data locality 

 Scalability 

Solution: augment data flow model with “resilient distributed 

datasets” (RDDs) 
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Programming Model with RDD 

 Resilient distributed datasets (RDDs) 

 Immutable collections partitioned across cluster that can be rebuilt 
if a partition is lost 

 Created by transforming data in stable storage using data flow 
operators (map, filter, group-by, …) 

 Can be cached across parallel operations 

 

 Parallel operations on RDDs 

 Reduce, collect, count, save, … 

 

 Restricted shared variables 

 Accumulators, broadcast variables 
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Example: Logistic Regression 

 Goal: find best line separating two sets of points 

target 

random initial line 
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Logistic Regression (SCALA Code) 

val data = 
spark.textFile(...).map(readPoint).cache() 
 
var w = Vector.random(D) 
 
for (i <- 1 to ITERATIONS) { 
  val gradient = data.map(p => 
    (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * 
p.x 
  ).reduce(_ + _) 
  w -= gradient 
} 
 
println("Final w: " + w) 
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Conclusion 
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Conclusion 
 Data storage needs are rapidly increasing 

 Hadoop has become the de-facto standard for handling these 

massive data sets. 

 Storage of Big Data requires new storage models 

 NoSQL solutions. 

 Parallel processing of Big Data requires a new programming 

paradigm 

   MapReduce programming model. 

  “Big data” is moving beyond one-passbatch  jobs, to low-latency 

apps that need datasharing 

 Apache Spark is an alternative solution. 
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