
Lionel Fillatre

Université Nice Sophia Antipolis

Polytech Nice Sophia

Laboratoire I3S

École d'été thématique CNRS BasMatI

3 juin 2015

Outils informatiques pour le Big Data

en astronomie

1

Outlines
 What is the Big Data (including Hadoop Ecosystem)

 HDFS (Hadoop Distributed File System)

 What is MapReduce?

 Image Coaddition with MapReduce

 What is NoSQL?

 What is Pig?

 What is Hive?

 What is Spark?

 Conclusion

2

What is the Big Data

3

Big Data Definition

 No single standard definition…

“Big Data” is data whose scale, diversity, and complexity

require new architecture, techniques, algorithms, and analytics

to manage it and extract value and hidden knowledge from it…

4

Characteristics of Big Data:

1-Scale (Volume)

 Data Volume
 44x increase from 2009 to 2020
 From 0.8 zettabytes to 35zb

 Data volume is increasing exponentially

5

Exponential increase in

collected/generated data

Characteristics of Big Data:

2-Complexity (Variety)

 Various formats, types, and structures

 Text, numerical, images, audio, video,
sequences, time series, social media
data, multi-dim arrays, etc…

 Static data vs. streaming data

 A single application can be
generating/collecting many types of
data

6

To extract knowledge

 all these types of data need to be linked together

Characteristics of Big Data:

3-Speed (Velocity)

 Data is generated fast and need to be processed fast

 Online Data Analytics

 Late decisions missing opportunities

 Examples
 E-Promotions: Based on your current location, your purchase history, what you like

 send promotions right now for store next to you

 Healthcare monitoring: sensors monitoring your activities and body

 any abnormal measurements require immediate reaction

7

Some Make it 5V’s

8

What technology for Big Data?

9

10

11

12

Hadoop Origins

 Apache Hadoop is a framework that allows for the

distributed processing of large data sets accross clusters of

commodity computers using a simple programming model.

 Hadoop is an open-source implementation of Google

MapReduce and Google File System (GFS).

 Hadoop fulfills need of common infrastructure:

 Efficient, reliable, easy to use,

 Open Source, Apache License.

13

Hadoop Ecosystem (main elements)

14

Data Storage

 Storage capacity has grown exponentially but read
speed has not kept up
 1990:

 Store 1,400 MB

 Transfer speed of 4.5MB/s

 Read the entire drive in ~ 5 minutes

 2010:
 Store 1 TB

 Transfer speed of 100MB/s

 Read the entire drive in ~ 3 hours

 Hadoop - 100 drives working at the same time can
read 1TB of data in 2 minutes

15

Hadoop Cluster

 A set of "cheap" commodity hardware

 No need for super-computers, use commodity unreliable hardware

 Not desktops

 Networked together

 May reside in the same location

 – Set of servers in a set of racks in a data center

16

Scale-Out Instead of Scale-Up
 It is harder and more expensive to scale-up

 Add additional resources to an existing node (CPU, RAM)

 Moore’s Law can’t keep up with data growth

 New units must be purchased if required resources can not be added

 Also known as scale vertically

 Scale-Out

 Add more nodes/machines to an existing distributed application

 Software layer is designed for node additions or removal

 Hadoop takes this approach - A set of nodes are bonded together as a

single distributed system

 Very easy to scale down as well

17

Code to Data

 Traditional data processing architecture

 Nodes are broken up into separate processing and storage nodes

connected by high-capacity link

 Many data-intensive applications are not CPU demanding

causing bottlenecks in network

18

Code to Data

 Hadoop co-locates processors and storage

 Code is moved to data (size is tiny, usually in KBs)

 Processors execute code and access underlying local storage

19

Failures are Common

 Given a large number machines, failures are

common

 Large warehouses may see machine failures weekly or even daily

 Hadoop is designed to cope with node failures

 Data is replicated

 Tasks are retried

20

Comparison to RDBMS

 Relational Database Management Systems

(RDBMS) for batch processing

 Oracle, Sybase, MySQL, Microsoft SQL Server, etc.

 Hadoop doesn’t fully replace relational products; many

architectures would benefit from both Hadoop and a Relational

product

 RDBMS products scale up

 Expensive to scale for larger installations

 Hits a ceiling when storage reaches 100s of terabytes

 Structured Relational vs. Semi-Structured vs. Unstructured

 Hadoop was not designed for real-time or low latency queries

21

HDFS

(Hadoop Distributed File System)

22

HDFS

 Appears as a single disk

 Runs on top of a native filesystem

 Fault Tolerant

 Can handle disk crashes, machine crashes, etc...

 Based on Google's Filesystem (GFS or GoogleFS)

23

HDFS is Good for...

 Storing large files

 Terabytes, Petabytes, etc...

 Millions rather than billions of files

 100MB or more per file

 Streaming data

 Write once and read-many times patterns

 Optimized for streaming reads rather than random reads

 “Cheap” Commodity Hardware

 No need for super-computers, use less reliable commodity hardware

24

HDFS is not so good for...

 Low-latency reads

 High-throughput rather than low latency for small chunks of data

 HBase addresses this issue

 Large amount of small files

 Better for millions of large files instead of billions of small files

 For example each file can be 100MB or more

 Multiple Writers

 Single writer per file

 Writes only at the end of file, no-support for arbitrary offset

25

HDFS Daemons

26

Files and Blocks

27

HDFS File Write

28

HDFS File Read

29

What is MapReduce?

30

Hadoop MapReduce

 Model for processing large amounts of data in

parallel

 On commodity hardware

 Lots of nodes

 Derived from functional programming

 Map and reduce functions

 Can be implemented in multiple languages

 Java, C++, Ruby, Python, etc.

31

Hadoop MapReduce History

32

Main principle

 Map: (f, [a, b, c, ...]) -> [f(a), f(b), f(c), ...]

 Apply a function to all the elements of a list

 ex.: map((f: x->x + 1), [1, 2, 3]) = [2, 3, 4]

 Intrinsically parallel

 Reduce: (g, [a, b, c, ...]) -> g(a, g(b, g(c, ...)))

 Apply a function to a list recursively

 ex.: (sum , [1, 2, 3 ,4]) = sum(1, sum(2, sum(3, 4)))

 Purely fonctionnal

 No global variables, no side effects

33

WordCount example

34

MapReduce Framework

35

 Takes care of distributed processing and coordination

 Scheduling

 Jobs are broken down into smaller chunks called tasks.

 These tasks are scheduled.

 Task localization with Data

 Framework strives to place tasks on the nodes that host the

segment of data to be processed by that specific task

 Code is moved to where the data is

MapReduce Framework

36

 Error Handling

 Failures are an expected behavior so tasks are automatically re-tried

on other machines

 Data Synchronization

 Shuffle and Sort barrier re-arranges and moves data between

machines

 Input and output are coordinated by the framework

Map Reduce 2.0 on YARN

 Yet Another Resource Negotiator (YARN)

 Various applications can run on YARN

 MapReduce is just one choice (the main choice at this point)

 http://wiki.apache.org/hadoop/PoweredByYarn

37

YARN Cluster

38

YARN: Running an Application

39

YARN: Running an Application

40

YARN: Running an Application

41

YARN: Running an Application

42

YARN: Running an Application

43

YARN and MapReduce

 YARN does not know or care what kind of application it is

running

 MapReduce uses YARN

 Hadoop includes a MapReduce ApplicationMaster to manage

MapReduce jobs

 Each MapReduce job is an instance of an application

44

Running a MapReduce2 Application

45

Running a MapReduce2 Application

46

Running a MapReduce2 Application

47

Running a MapReduce2 Application

48

Running a MapReduce2 Application

49

Running a MapReduce2 Application

50

Running a MapReduce2 Application

51

Running a MapReduce2 Application

52

Running a MapReduce2 Application

53

Image Coaddition with

MapReduce

54

What is Astronomical Survey Science

from Big Data point of view ?

 Gather millions of images and TBs/PBs of storage.

 Require high-throughput data reduction pipelines.

 Require sophisticated off-line data analysis tools

 The following example is extracted from
Wiley K., Connolly A., Gardner J., Krughoff S., Balazinska M., Howe B., Kwon

Y., Bu Y.

Astronomy in the Cloud: Using MapReduce for Image Co-Addition.

Publications of the Astronomical Society of the Pacific,

2011, vol. 123, no. 901, pp. 366-380.

55

FITS (Flexible Image Transport System)

 An image format that knows where it is looking.

 Common astronomical image representation file format.

 Metadata tags (like EXIF):

 Most importantly: Precise astrometry (position on sky)

 Other:

 Geolocation (telescope location)

 Sky conditions, image quality, etc.

56

Image Coaddition

 Give multiple partially overlapping images and a query

(color and sky bounds):

 Find images’ intersections with the query bounds.

 Project bitmaps to the bounds.

 Stack and mosaic into a final product.

57

Image Stacking (Signal Averaging)
 Stacking improves SNR: makes

fainter objects visible.

 Example (SDSS, Stripe 82):

 Top: Single image, R-band

 Bottom: 79-deep stack (~9x

SNR improvement)

 Variable conditions (e.g.,

atmosphere, PSF, haze) mean

stacking algorithm complexity

can exceed a mere sum.
58

Advantages of MapReduce

 High-level problem description. No effort spent on

internode communication, message-passing, etc.

 Programmed in Java (accessible to most science researchers,

not just computer scientists and engineers).

 Runs on cheap commodity hardware, potentially in the

cloud, e.g., Amazon’s EC2.

 Scalable: 1000s of nodes can be added to the cluster with no

modification to the researcher’s software.

 Large community of users/support.

59

Coaddition in Hadoop

60

What is NoSQL?

61

What is NoSQL?
 Stands for Not Only SQL

 Class of non-relational data storage systems

 Usually do not require a fixed table schema nor do they use the

concept of joins

 All NoSQL offerings relax one or more of the ACID properties

(CAP theorem)

 For data storage, an RDBMS cannot be the be-all/end-all

 Just as there are different programming languages, need to have

other data storage tools in the toolbox

 A NoSQL solution is more acceptable to a client now

62

The CAP Theorem

 Theorem: You can have at most

two of these properties for any

shared-data system

Consistency

Partition

tolerance

Availability

63

The CAP Theorem
 Once a writer has written, all

readers will see that write

Consistency

Partition

tolerance

Availability

64

Consistency

 Two kinds of consistency:

 strong consistency – ACID (Atomicity Consistency

Isolation Durability)

 weak consistency – BASE (Basically Available Soft-state

Eventual consistency)

• Basically Available: The database system always seems to work!

• Soft State: It does not have to be consistent all the time.

• Eventually Consistent: The system will eventually become

consistent when the updates propagate, in particular, when there

are not too many updates.

 65

The CAP Theorem

 System is available during

software and hardware upgrades

and node failures.

Consistency

Partition

tolerance

Availability

66

Availability

 A guarantee that every request receives a response about whether

it succeeded or failed.

 Traditionally, thought of as the server/process available five 9’s

(99.999 %).

 However, for large node system, at almost any point in time

there’s a good chance that a node is either down or there is a

network disruption among the nodes.

67

The CAP Theorem

 A system can continue to

operate in the presence of a

network partitions.

Consistency

Partition

tolerance

Availability

68

Failure is the rule

 Amazon:

 Datacenter with 100 000 disks

 From 6 000 to 10 000 disks fail over per year (25

disks per day)

 Sources of failures are numerous:

 Hardware (disk)

 Network

 Power

 Software

 Software and OS updates.

69

The CAP Theorem

70

• Distributed Key-Value Systems - Lookup a single value for a key

• Amazon’s Dynamo

• Document-based Systems - Access data by key or by search of “document” data.

• CouchDB

• MongoDB

• Column-based Systems

• Google’s BigTable

• HBase

• Facebook’s Cassandra

• Graph-based Systems - Use a graph structure

• Google’s Pregel

• Neo4j

71

Different Types of NoSQL Systems

“Value” is stored as a “blob”

• Without caring or knowing what is inside

• Application is responsible for understanding the data

In simple terms, a NoSQL Key-Value store is a single table with two columns: one

being the (Primary) Key, and the other being the Value.

Each record may have a different schema 72

Key-Value Pair (KVP) Stores

• Records within a single table can have different structures.

• An example record from Mongo, using JSON format, might look like

{

“_id” : ObjectId(“4fccbf281168a6aa3c215443″),

“first_name” : “Thomas”,

“last_name” : “Jefferson”,

“address” : {

 “street” : “1600 Pennsylvania Ave NW”,

 “city” : “Washington”,

 “state” : “DC”

}

}

Embedded object

• Records are called documents.

• You can also modify the structure of any document on the fly by adding and removing

members from the document.

• Unlike simple key-value stores, both keys and values are fully searchable in document

databases.

 73

Document storage

• Based on Google’s BigTable store:

• Each record = (row:string, column:string, time:int64)

• Distributed data storage, especially versioned data (time-stamps).

• What is a column-based store? - Data tables are stored as sections of

columns of data, rather than as rows of data.

74

Column-based Stores

• Apply graph theory in the storage of information about the relationship

between entries

• A graph database is a database that uses graph structures with nodes,

edges, and properties to represent and store data.

• In general, graph databases are useful when you are more interested in

relationships between data than in the data itself:

• for example, in representing and traversing social networks,

generating recommendations, or conducting forensic investigations

(e.g. pattern detection).

75

Graph Database

76

Example

What is Pig?

77

Pig
 In brief:

“is a platform for analyzing large data sets that consists of a high-level
language for expressing data analysis programs, coupled with infrastructure
for evaluating these programs.”

 Top Level Apache Project
 http://pig.apache.org

 Pig is an abstraction on top of Hadoop
 Provides high level programming language designed for data processing
 Converted into MapReduce and executed on Hadoop Clusters

 Pig is widely accepted and used
 Yahoo!, Twitter, Netflix, etc...
 At Yahoo!, 70% MapReduce jobs are written in Pig

78

http://pig.apache.org/
http://pig.apache.org/
http://pig.apache.org/

Disadvantages of Raw MapRaduce

1. Extremely rigid data flow

Other flows constantly hacked in

Join, Union Split

M R

M M R M

Chains

2. Common operations must be coded by hand

• Join, filter, projection, aggregates, sorting, distinct

3. Semantics hidden inside map-reduce functions

• Difficult to maintain, extend, and optimize

• Resulting code is difficult to reuse and maintain; shifts focus and attention away

from data analysis

79

Pig and MapReduce

 MapReduce requires programmers

 Must think in terms of map and reduce functions

 More than likely will require Java programmers

 Pig provides high-level language that can be used by

 Analysts

 Data Scientists

 Statisticians

 Etc...

 Originally implemented at Yahoo! to allow analysts to

access data

80

Pig’s Features

 Main operators:
 Join Datasets
 Sort Datasets
 Filter
 Data Types
 Group By
 User Defined Functions
 Etc..

 Example:
>movies = LOAD '/home/movies_data.csv' USING PigStorage(',') as
 (id,name,year,rating,duration);
>movies_greater_than_four = FILTER movies BY (float)rating>4.0;
>DUMP movies_greater_than_four;

81

What is Hive?

82

Hive

 Data Warehousing Solution built on top of Hadoop

 Provides SQL-like query language named HiveQL

 Minimal learning curve for people with SQL expertise

 Data analysts are target audience

 Early Hive development work started at Facebook in 2007

 Today Hive is an Apache project under Hadoop

 http://hive.apache.org

83

Advantages and Drawbacks

 Hive provides

 Ability to bring structure to various data formats

 Simple interface for ad hoc querying, analyzing and summarizing large
amounts of data

 Access to files on various data stores such as HDFS and Hbase

 Hive does not provide

 Hive does not provide low latency or realtime queries

 Even querying small amounts of data may take minutes

 Designed for scalability and ease-of-use rather than low latency
responses

84

Hive

 Translates HiveQL statements into a set of MapReduce Jobs which are

then executed on a Hadoop Cluster

85

What is Spark?

86

A Brief History: Spark

87

A general view of Spark

88

Current programming models

Map

Map

Map

Reduce

Reduce

Input Output

Benefits of data flow: runtime can decide where to run tasks and can

automatically recover from failures

 Current popular programming models for clusters transform

data flowing from stable storage to stable storage

 E.g., MapReduce:

89

MapReduce I/O

90

Spark

 Acyclic data flow is a powerful abstraction, but is not efficient for

applications that repeatedly reuse a working set of data:

 Iterative algorithms (many in machine learning)

 Interactive data mining tools (R, Excel, Python)

 Spark makes working sets a first-class concept to efficiently

support these apps.

91

Goal: Sharing at Memory Speed

92

Resilient Distributed Dataset (RDD)

 Provide distributed memory abstractions for clusters to support apps

with working sets.

 Retain the attractive properties of MapReduce:

 Fault tolerance (for crashes & stragglers)

 Data locality

 Scalability

Solution: augment data flow model with “resilient distributed

datasets” (RDDs)

93

Programming Model with RDD

 Resilient distributed datasets (RDDs)

 Immutable collections partitioned across cluster that can be rebuilt
if a partition is lost

 Created by transforming data in stable storage using data flow
operators (map, filter, group-by, …)

 Can be cached across parallel operations

 Parallel operations on RDDs

 Reduce, collect, count, save, …

 Restricted shared variables

 Accumulators, broadcast variables

94

Example: Logistic Regression

 Goal: find best line separating two sets of points

target

random initial line

95

Logistic Regression (SCALA Code)

val data =
spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
 val gradient = data.map(p =>
 (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y *
p.x
).reduce(_ + _)
 w -= gradient
}

println("Final w: " + w)

96

Conclusion

97

Conclusion
 Data storage needs are rapidly increasing

 Hadoop has become the de-facto standard for handling these

massive data sets.

 Storage of Big Data requires new storage models

 NoSQL solutions.

 Parallel processing of Big Data requires a new programming

paradigm

 MapReduce programming model.

 “Big data” is moving beyond one-passbatch jobs, to low-latency

apps that need datasharing

 Apache Spark is an alternative solution.

98

