
Lionel Fillatre 

Université Nice Sophia Antipolis 

Polytech Nice Sophia 

Laboratoire I3S 

 

École d'été thématique CNRS BasMatI  

3 juin 2015 

Outils informatiques pour le Big Data 

en astronomie 

1 



Outlines 
 What is the Big Data (including Hadoop Ecosystem) 

 HDFS (Hadoop Distributed File System) 

 What is MapReduce? 

 Image Coaddition with MapReduce 

 What is NoSQL? 

 What is Pig? 

 What is Hive? 

 What is Spark? 

 Conclusion 

 

2 



What is the Big Data 

3 



Big Data Definition 

 No single standard definition… 

 

“Big Data” is data whose scale, diversity, and complexity 

require new architecture, techniques, algorithms, and analytics 

to manage it and extract value and hidden knowledge from it… 

4 



Characteristics of Big Data:  

1-Scale (Volume) 

 Data Volume 
 44x increase from 2009 to 2020 
 From 0.8 zettabytes to 35zb 

 Data volume is increasing exponentially  

5 

Exponential increase in 

collected/generated data 



Characteristics of Big Data:  

2-Complexity (Variety) 

 Various formats, types, and structures 

 Text, numerical, images, audio, video, 
sequences, time series, social media 
data, multi-dim arrays, etc… 

 Static data vs. streaming data   

 A single application can be 
generating/collecting many types of 
data   

 

6 

To extract knowledge 

 all these types of data need to be linked together 



Characteristics of Big Data:  

3-Speed (Velocity) 

 Data is generated fast and need to be processed fast 

 Online Data Analytics 

 Late decisions  missing opportunities 

 Examples 
 E-Promotions: Based on your current location, your purchase history, what you like 

 send promotions right now for store next to you 

 

 Healthcare monitoring: sensors monitoring your activities and body   

     any abnormal measurements require immediate reaction 

7 



Some Make it 5V’s 

8 



What technology for Big Data? 

 

9 



10 



11 



12 



Hadoop Origins 

 Apache Hadoop is a framework that allows for the 

distributed processing of large data sets accross clusters of 

commodity computers using a simple programming model. 

 Hadoop is an open-source implementation of Google 

MapReduce and Google File System (GFS). 

 Hadoop fulfills need of common infrastructure: 

 Efficient, reliable, easy to use, 

 Open Source, Apache License. 

13 



Hadoop Ecosystem (main elements) 

14 



Data Storage 

 Storage capacity has grown exponentially but read 
speed has not kept up 
 1990: 

 Store 1,400 MB 

 Transfer speed of 4.5MB/s 

 Read the entire drive in ~ 5 minutes 

 2010: 
 Store 1 TB 

 Transfer speed of 100MB/s 

 Read the entire drive in ~ 3 hours 

 Hadoop - 100 drives working at the same time can 
read 1TB of data in 2 minutes 

15 



Hadoop Cluster 

 A set of "cheap" commodity hardware 

 No need for super-computers, use commodity unreliable hardware 

 Not desktops 

 Networked together 

 May reside in the same location 

    – Set of servers in a set of racks in a data center 

16 



Scale-Out Instead of Scale-Up 
 It is harder and more expensive to scale-up 

 Add additional resources to an existing node (CPU, RAM) 

 Moore’s Law can’t keep up with data growth 

 New units must be purchased if required resources can not be added 

 Also known as scale vertically 

 Scale-Out 

 Add more nodes/machines to an existing distributed application 

 Software layer is designed for node additions or removal 

 Hadoop takes this approach - A set of nodes are bonded together as a 

single distributed system 

 Very easy to scale down as well 

17 



Code to Data 

 Traditional data processing architecture 

 Nodes are broken up into separate processing and storage nodes 

connected by high-capacity link 

 Many data-intensive applications are not CPU demanding 

causing bottlenecks in network 

18 



Code to Data 

 Hadoop co-locates processors and storage 

 Code is moved to data (size is tiny, usually in KBs) 

 Processors execute code and access underlying local storage 

19 



Failures are Common 

 Given a large number machines, failures are 

common 

 Large warehouses may see machine failures weekly or even daily 

 Hadoop is designed to cope with node failures 

 Data is replicated 

 Tasks are retried 

20 



Comparison to RDBMS 

 Relational Database Management Systems 

(RDBMS) for batch processing 

 Oracle, Sybase, MySQL, Microsoft SQL Server, etc. 

 Hadoop doesn’t fully replace relational products; many 

architectures would benefit from both Hadoop and a Relational 

product 

 RDBMS products scale up 

 Expensive to scale for larger installations 

 Hits a ceiling when storage reaches 100s of terabytes 

 Structured Relational vs. Semi-Structured vs. Unstructured 

 Hadoop was not designed for real-time or low latency queries 

 
21 



HDFS 

(Hadoop Distributed File System) 

22 



HDFS 

 Appears as a single disk 

 Runs on top of a native filesystem 

 Fault Tolerant 

 Can handle disk crashes, machine crashes, etc... 

 Based on Google's Filesystem (GFS or GoogleFS) 

23 



HDFS is Good for... 

 Storing large files 

 Terabytes, Petabytes, etc... 

 Millions rather than billions of files 

 100MB or more per file 

 Streaming data 

 Write once and read-many times patterns 

 Optimized for streaming reads rather than random reads 

 “Cheap” Commodity Hardware 

 No need for super-computers, use less reliable commodity hardware 

24 



HDFS is not so good for... 

 Low-latency reads 

 High-throughput rather than low latency for small chunks of data 

 HBase addresses this issue 

 Large amount of small files 

 Better for millions of large files instead of billions of small files 

 For example each file can be 100MB or more 

 Multiple Writers 

 Single writer per file 

 Writes only at the end of file, no-support for arbitrary offset 

25 



HDFS Daemons 

26 



Files and Blocks 

27 



HDFS File Write 

28 



HDFS File Read 

29 



What is MapReduce? 

30 



Hadoop MapReduce 

 Model for processing large amounts of data in 

parallel 

 On commodity hardware 

 Lots of nodes 

 Derived from functional programming 

 Map and reduce functions 

 Can be implemented in multiple languages 

 Java, C++, Ruby, Python, etc. 

31 



Hadoop MapReduce History 

32 



Main principle 
 

 Map: ( f, [a, b, c, ...]) -> [ f(a), f(b), f(c), ... ] 

 Apply a function to all the elements of a list 

 ex.: map((f: x->x + 1), [1, 2, 3]) = [2, 3, 4] 

 Intrinsically parallel 

 

 Reduce: ( g, [a, b, c, ...] ) -> g(a, g(b, g(c, ... ))) 

 Apply a function to a list recursively 

 ex.: (sum , [1, 2, 3 ,4]) = sum(1, sum( 2, sum( 3, 4 )  ) ) 

 

 Purely fonctionnal 

 No global variables, no side effects 

33 



WordCount example 

34 



MapReduce Framework 

35 

 Takes care of distributed processing and coordination 

 Scheduling 

 Jobs are broken down into smaller chunks called tasks.  

 These tasks are scheduled. 

 Task localization with Data 

 Framework strives to place tasks on the nodes that host the 

segment of data to be processed by that specific task 

 Code is moved to where the data is 



MapReduce Framework 

36 

 Error Handling 

 Failures are an expected behavior so tasks are automatically re-tried 

on other machines 

 Data Synchronization 

 Shuffle and Sort barrier re-arranges and moves data between 

machines 

 Input and output are coordinated by the framework 



Map Reduce 2.0 on YARN 

 Yet Another Resource Negotiator (YARN) 

 Various applications can run on YARN 

 MapReduce is just one choice (the main choice at this point) 

 http://wiki.apache.org/hadoop/PoweredByYarn 

37 



YARN Cluster 

38 



YARN: Running an Application 

39 



YARN: Running an Application 

 

40 



YARN: Running an Application 

 

41 



YARN: Running an Application 

 

42 



YARN: Running an Application 

 

43 



YARN and MapReduce 

 YARN does not know or care what kind of application it is 

running 

 MapReduce uses YARN 

 Hadoop includes a MapReduce ApplicationMaster to manage 

MapReduce jobs 

 Each MapReduce job is an instance of an application 

44 



Running a MapReduce2 Application 

45 



Running a MapReduce2 Application 

46 



Running a MapReduce2 Application 

47 



Running a MapReduce2 Application 

48 



Running a MapReduce2 Application 

49 



Running a MapReduce2 Application 

 

50 



Running a MapReduce2 Application 

51 



Running a MapReduce2 Application 

52 



Running a MapReduce2 Application 

53 



Image Coaddition with 

MapReduce 

54 



What is Astronomical Survey Science 

from Big Data point of view ? 
 

 Gather millions of images and TBs/PBs of storage. 

 Require high-throughput data reduction pipelines. 

 Require sophisticated off-line data analysis tools 

 The following example is extracted from 
Wiley K., Connolly A., Gardner J., Krughoff S., Balazinska M., Howe B., Kwon 

Y., Bu Y.  

Astronomy in the Cloud: Using MapReduce for Image Co-Addition. 

Publications of the Astronomical Society of the Pacific,  

2011, vol. 123, no. 901, pp. 366-380.  

55 



FITS (Flexible Image Transport System) 

 An image format that knows where it is looking. 

 Common astronomical image representation file format. 

 Metadata tags (like EXIF): 

 Most importantly: Precise astrometry (position on sky) 

 Other: 

 Geolocation (telescope location) 

 Sky conditions, image quality, etc. 

56 



Image Coaddition 

 Give multiple partially overlapping images and a query 

(color and sky bounds): 

 Find images’ intersections with the query bounds. 

 Project bitmaps to the bounds. 

 Stack and mosaic into a final product. 

57 



Image Stacking (Signal Averaging) 
 Stacking improves SNR: makes 

fainter objects visible. 

 

 Example (SDSS, Stripe 82): 

 Top: Single image, R-band 

 Bottom: 79-deep stack (~9x 

SNR improvement) 

 

 Variable conditions (e.g., 

atmosphere, PSF, haze) mean 

stacking algorithm complexity 

can exceed a mere sum. 
58 



Advantages of MapReduce 

 High-level problem description. No effort spent on 

internode communication, message-passing, etc. 

 Programmed in Java (accessible to most science researchers, 

not just computer scientists and engineers). 

 Runs on cheap commodity hardware, potentially in the 

cloud, e.g., Amazon’s EC2. 

 Scalable: 1000s of nodes can be added to the cluster with no 

modification to the researcher’s software. 

 Large community of users/support. 

59 



Coaddition in Hadoop 

 

60 



What is NoSQL? 

61 



What is NoSQL? 
 Stands for Not Only SQL 

 Class of non-relational data storage systems 

 Usually do not require a fixed table schema nor do they use the 

concept of joins 

 All NoSQL offerings relax one or more of the ACID properties 

(CAP theorem) 

 For data storage, an RDBMS cannot be the be-all/end-all 

 Just as there are different programming languages, need to have 

other data storage tools in the toolbox 

 A NoSQL solution is more acceptable to a client now 

 

62 



The CAP Theorem 

   Theorem: You can have at most 

two of these properties for any 

shared-data system 

 

Consistency 

Partition 

tolerance 

Availability 

63 



The CAP Theorem 
 Once a writer has written, all 

readers will see that write 

Consistency 

Partition 

tolerance 

Availability 

64 



Consistency 

 Two kinds of consistency: 

 strong consistency – ACID (Atomicity Consistency 

Isolation Durability) 

 weak consistency – BASE (Basically Available Soft-state 

Eventual consistency)  

• Basically Available: The database system always seems to work!  

• Soft State: It does not have to be consistent all the time. 

• Eventually Consistent: The system will eventually become 

consistent when the updates propagate, in particular, when there 

are not too many updates. 

 

 65 



The CAP Theorem 

   System is available during 

software and hardware upgrades 

and node failures. 

Consistency 

Partition 

tolerance 

Availability 

66 



Availability 

 A guarantee that every request receives a response about whether 

it succeeded or failed. 

 Traditionally, thought of as the server/process available five 9’s 

(99.999 %). 

 However, for large node system, at almost any point in time 

there’s a good chance that a node is either down or there is a 

network disruption among the nodes.  

67 



The CAP Theorem 

   A system can continue to 

operate in the presence of a 

network partitions. 

Consistency 

Partition 

tolerance 

Availability 

68 



Failure is the rule 

 Amazon: 

 Datacenter with 100 000 disks 

 From 6 000 to 10 000 disks fail over per year  (25 

disks per day) 

 Sources of failures are numerous: 

 Hardware (disk) 

 Network 

 Power 

 Software 

 Software and OS updates. 

69 



The CAP Theorem 

70 



 

 

 

• Distributed Key-Value Systems - Lookup a single value for a key  

• Amazon’s  Dynamo 

 

• Document-based Systems - Access data by key or by search of “document” data.  

• CouchDB 

• MongoDB 

 

• Column-based Systems 

• Google’s BigTable 

• HBase 

• Facebook’s Cassandra 

 

• Graph-based Systems - Use a graph structure 

• Google’s Pregel 

• Neo4j 

 

  

 

71 

Different Types of NoSQL Systems 



“Value” is stored as a “blob” 

•  Without caring or knowing what is inside 

• Application is responsible for understanding the data  

In simple terms, a NoSQL Key-Value store is a single table with two columns: one 

being the (Primary) Key, and the other being the Value.  

Each record may have a different schema 72 

Key-Value Pair (KVP) Stores 

 



 

 

• Records within a single table can have different structures. 

• An example record from Mongo, using JSON format, might look like 

{ 

“_id” : ObjectId(“4fccbf281168a6aa3c215443″), 

 

“first_name” : “Thomas”, 

“last_name” : “Jefferson”, 

“address” : { 

 “street” : “1600 Pennsylvania Ave NW”, 

 “city” : “Washington”, 

 “state” : “DC” 

} 

} 

Embedded object 

• Records are called documents.  

• You can also modify the structure of any document on the fly by adding and removing 

members from the document. 

• Unlike simple key-value stores, both keys and values are fully searchable in document 

databases. 

 73 

Document storage 



• Based on Google’s BigTable store:  

• Each record = (row:string, column:string, time:int64)  

• Distributed data storage, especially versioned data (time-stamps).  

• What is a column-based store? - Data tables are stored as sections of 

columns of data, rather than as rows of data. 

74 

Column-based Stores 



• Apply graph theory in the storage of information about the relationship 

between entries 

• A graph database is a database that uses graph structures with nodes, 

edges, and properties to represent and store data.  

 

• In general, graph databases are useful when you are more interested in 

relationships between data than in the data itself:  

• for example, in representing and traversing social networks, 

generating recommendations, or conducting forensic investigations 

(e.g. pattern detection).  

75 

Graph Database 



76 

Example 



What is Pig? 

77 



Pig 
 In brief: 

“is a platform for analyzing large data sets that consists of a high-level 
language for expressing data analysis programs, coupled with infrastructure 
for evaluating these programs.” 

 

 Top Level Apache Project 
 http://pig.apache.org 

 

 Pig is an abstraction on top of Hadoop 
 Provides high level programming language designed for data processing 
 Converted into MapReduce and executed on Hadoop Clusters 

 

 Pig is widely accepted and used 
 Yahoo!, Twitter, Netflix, etc... 
 At Yahoo!, 70% MapReduce jobs are written in Pig 

 
78 

http://pig.apache.org/
http://pig.apache.org/
http://pig.apache.org/


Disadvantages of Raw MapRaduce 

1. Extremely rigid data flow 

Other flows constantly hacked in 

Join, Union Split 

M R 

M M R M 

Chains 

2. Common operations must be coded by hand 

• Join, filter, projection, aggregates, sorting, distinct 

3. Semantics hidden inside map-reduce functions 

• Difficult to maintain, extend, and optimize 

• Resulting code is difficult to reuse and maintain; shifts focus and attention away 

from data analysis 

 

79 



Pig and MapReduce 

 MapReduce requires programmers 

 Must think in terms of map and reduce functions 

 More than likely will require Java programmers 

 Pig provides high-level language that can be used by 

 Analysts 

 Data Scientists 

 Statisticians 

 Etc... 

 Originally implemented at Yahoo! to allow analysts to 

access data 

80 



Pig’s Features 

 Main operators: 
 Join Datasets 
 Sort Datasets 
 Filter 
 Data Types 
 Group By 
 User Defined Functions 
 Etc.. 

 

 Example: 
>movies = LOAD '/home/movies_data.csv' USING PigStorage(',') as    
                   (id,name,year,rating,duration); 
>movies_greater_than_four = FILTER movies BY (float)rating>4.0;  
>DUMP movies_greater_than_four; 

 

81 



What is Hive? 

82 



Hive 

 Data Warehousing Solution built on top of Hadoop 

 Provides SQL-like query language named HiveQL 

 Minimal learning curve for people with SQL expertise 

 Data analysts are target audience 

 Early Hive development work started at Facebook in 2007 

 Today Hive is an Apache project under Hadoop 

 http://hive.apache.org 

83 



Advantages and Drawbacks 

 Hive provides 

 Ability to bring structure to various data formats 

 Simple interface for ad hoc querying, analyzing and summarizing large 
amounts of data 

 Access to files on various data stores such as HDFS and Hbase 

 

 Hive does not provide 

 Hive does not provide low latency or realtime queries 

 Even querying small amounts of data may take minutes 

 Designed for scalability and ease-of-use rather than low latency 
responses 

 
84 



Hive 

 Translates HiveQL statements into a set of MapReduce Jobs which are 

then executed on a Hadoop Cluster 

85 



What is Spark? 

86 



A Brief History: Spark 

87 



A general view of Spark 

88 



Current programming models 

Map 

Map 

Map 

Reduce 

Reduce 

Input Output 

Benefits of data flow: runtime can decide where to run tasks and can 

automatically recover from failures 

 Current popular programming models for clusters transform 

data flowing from stable storage to stable storage 

 E.g., MapReduce: 

89 



MapReduce I/O 

90 



Spark 

 Acyclic data flow is a powerful abstraction, but is not efficient for 

applications that repeatedly reuse a working set of data: 

 Iterative algorithms (many in machine learning) 

 Interactive data mining tools (R, Excel, Python) 

 

 Spark makes working sets a first-class concept to efficiently 

support these apps. 

91 



Goal: Sharing at Memory Speed 

92 



Resilient Distributed Dataset (RDD) 

 

 Provide distributed memory abstractions for clusters to support apps 

with working sets. 

 

 Retain the attractive properties of MapReduce: 

 Fault tolerance (for crashes & stragglers) 

 Data locality 

 Scalability 

Solution: augment data flow model with “resilient distributed 

datasets” (RDDs) 

93 



Programming Model with RDD 

 Resilient distributed datasets (RDDs) 

 Immutable collections partitioned across cluster that can be rebuilt 
if a partition is lost 

 Created by transforming data in stable storage using data flow 
operators (map, filter, group-by, …) 

 Can be cached across parallel operations 

 

 Parallel operations on RDDs 

 Reduce, collect, count, save, … 

 

 Restricted shared variables 

 Accumulators, broadcast variables 

94 



Example: Logistic Regression 

 Goal: find best line separating two sets of points 

target 

random initial line 

95 



Logistic Regression (SCALA Code) 

val data = 
spark.textFile(...).map(readPoint).cache() 
 
var w = Vector.random(D) 
 
for (i <- 1 to ITERATIONS) { 
  val gradient = data.map(p => 
    (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * 
p.x 
  ).reduce(_ + _) 
  w -= gradient 
} 
 
println("Final w: " + w) 

96 



Conclusion 

97 



Conclusion 
 Data storage needs are rapidly increasing 

 Hadoop has become the de-facto standard for handling these 

massive data sets. 

 Storage of Big Data requires new storage models 

 NoSQL solutions. 

 Parallel processing of Big Data requires a new programming 

paradigm 

   MapReduce programming model. 

  “Big data” is moving beyond one-passbatch  jobs, to low-latency 

apps that need datasharing 

 Apache Spark is an alternative solution. 

 
98 


