?
=
-

=t

/ g @

AN INTRODUCTION TO DETECTION THEORY

Olivier Michel

Univ. Grenoble-Alpes, GIPSA-Lab, F-38000 Grenoble



Outline

A- The detection problem

: formulation

: Detection Errors

: Example

: The min error receiver

. Multiple hypothesis testing
: Neyman Pearson

ook~ wWND =

B- Characterization, performances (simple hypothesis)
1- ROC Curves
2- Evaluating Signal detectability
3- Link to information theory, large deviations

C- Composite hypothesis testing
1-UMP test
2- Alternate Strategies



A1. The detection problem : formulation

d
Observe x € Q2 wherexz ~ Q, Q € {P1, Py}
or
Observe : X = {x1,...,xn} € X, ni.i.d. realizations,

thusX:Q”anngQnE{P?,Pg}

Problem statement : Design a “receiver” that makes as few errors as possible, in
deciding
for the SIMPLE hypothesis framework (no unknown parameters) :

Ho: x<py
d
Hy: X ~Pp

or for the COMPOSITE hypothesis framework : (unknown parameters)

Ho: X £ PR(X,00), 0 € S
Hy: X< Pr(X,61), 61 €O



The detection problem : formulation, cont'nd

e The choices Hp, Hq are mutually exclusive
e The receiver ALWAYS makes a choice

— Design a decision function ¢, which expresses a partition of X

Xo=A{{x:¢(x) =0: decide Hp} Rejection region
X1 ={x:¢(x) =1: decide Hi} Acceptance region

where

XlzXS and XYjUXy=X



A.2. Detection errors

For the binary hypothesis testing problem , 2 kinds of errors :

False Alarm (FA) and Miss (M)

Ppa(6o) = [, P8 (X,00)dX = Epy[s] , 6 € o
1

Ppr(671) =/

PP(X,601)dX = 1 —/
X0

N P1'(X,01)dX =Ep [1-9¢],0, € O,
1

The correct detection probability is expressed by Pp =1 — Py, 0 € ©1.



A.3. Example : test on the mean of a gaussian observation

Let = be a normal R.V. wich has pdf py (z) under H;, i € {0, 1}

Po(x]0p) = pgy(x) = \}%GXD( 5o ) under Ho
2
P1(33|61) = p@l(x) = 0\/12— exp( (x m) ) under Hy

where o2 and m are known.

Here,n =1, ©9 = {0} and ©1 = {m}
p(0p) = 6(0p) and p(61) = 6(61 —m)

— The test resumes to compare x to a threshold 7 :
Xo =] — o0, n] and Xy =]n, col;
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Another example

Detecting a change in the rate of a random Poisson process
— CCD , 256 pixels on a unique line
— Background noise : Poisson process of rate f = 2
— Random Signal : Poisson process of rate A = hx“Airy PSF” |, r = 5,
h —o.
f ’



lllustration Generalized Max likelihood
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A. 4. Binary hypothesis testing strategy
Bayes approach for designing of the minimum error receiver
Maximize the probability of correct classification, P

I"PRIORS!!': ({P(Hg), P(H1)}), or prior density p(6;) and py.(x)

Po= 3 PH) [ | po,@)p(0)dbida

i=0,1

Rk : Maximizing P- amounts to define Bayes cost functions
C11(01) = Coo(0o) = 0 and C10(6o) = Co1(61) = 1, Vb1, VOo
where Cj; is the cost of deciding H; when Hj is true.

This leads to select the hypothesis with the largest posterior probability
— evaluate

P(H;).p(x|H;)
px(x)
hence, the MAP test is expressed by a LR Test

_ p(z|H1) 1 p(Ho)
p(z|Ho) mHy p(H1)

p(H;lz) =

L(x)

10



A.5. Case of Multiple hypothesis testing-1- (skip next 3 slides ?)

Ho: 0p€©q [z~pg,(x), 0€ Og]

Hy o Oy € ©Op [z = pg,,(z), 0€ O]
The decision function ¢(z) = [p1(x), ..., ¢ (x)]? verifies

¢(x) € {0,1}Vx € X
SM. ¢i(x) =1Vz e X

Let C;; = cost to decide H; when H; is true, and p(H;|H;) the proba of such
decision

C=yM_, Cyp(H;|H;)p(H;)
J

11



Multiple hypothesis testing, cont’'nd-

Consider the case

C;; =0 ie{l,...,M}

The P.rr equals Bayes’s risk :
C = Zf\ggjzl Cyip(H;|H;)p(H;)

=1—-X1, Cyup(H;|Hy)p(H;)
=1— Y7L, Ciip(H;) [, p(a|H;)dx

Jo. p(x,0)do
where p(z|H;) = e@p(Hi)

C is minimal if Vi € {1,..., M}, X; are such that

r € X; < p(H;)p(x|H;) > p(Hj)p(x|Hj) 5 # 1

Thus the decision rule

—~

H; = ArgMazg [p(H))p(a|Hj)| = ArgMazy, [p(Hj|)]

12



Multiple hypothesis testing, cont’'nd

Decision rules are non transitive in general

For example
HivsHy — FIQ
HovsHy — ﬁ3
HivsH3 — ﬁl

But, as the LR for the thest H; vs H; is L;; = ;&'?%
J

Lig(z) = Ljj(z) L ()
1 —_ L
The decision rule L;;(z) = n;;, shows that transitivity is obtained if
Ho

(Cji — Cy) (Crj —Cj5)  (Cri — Cy)

e (Cij = Cj3) (Cje = Crr) - (Cig = C)

13



BUT .. if no available prior ({ P(Ho), P(H1)}), and densities py,)
A.6. The neymann pearson framework

Constrain max|gce,Pra(0) < a and maximize Pp(0)|pce,maximal.

neymann Pearson Lemma The most powerfull test (MP) of level o« € [0, 1] is a
randomized LRT of the form

1, pg,(z) > npy,(z)
¢(x) = ¢ q, po,(z) = npgy(x)
0, pg,(x) < npg,(x)

where the parameters n and g are choosen to satisfy the constraint Eg [¢] = o

14



= Likelihood ratio tests

Summarizing :

If known priors p(H;) and C;; — Bayes approach — LRT with “well defined thre-
shold” n : Min-error or min-cost test

If unknown priors p(H;) but known C;; — Bayes approach — LRT with 7(pg)
where pg minimizes the maximal (worst case) bayes cost.

Otherwise — NP approach — LRT with n satisfying constraints on Pg 4 :
Most powerfull test of level « = Pr 4

Evaluation of the performances ?

15



B. Evaluating signal detectability, or the performances of a test

Assume that n indep. observations x; are available ;
Take for the test statistics e.g;

n
G =) logL(z;)
i=1
ROC computation requires the evaluation of

oo oo
Ppg = /77 pG,0,(9)dg and Pp = /77 pa,0,(9)dg

where pg ¢.(g)dg = pdf of the test statistics G under hypothesis H;.

In most cases : no closed form expressions for these integrals...

16



(Evaluating signal detectability, or the performances of a test, cont'nd)

Note : For next section : Both hypothesis are simple

Signal detectability ?
a- ROC, either by direct calculation or by numerical methods

( not in this course) b- Methods relying upon limited expensions of the stats.
around the normal distribution : ~ more accurate for large n ;
rely upon CLT — accuracy obtained only ifn ~ G

c- Minimal performances Chernoff Bounds :
Give lower bound for Py, and upper bound for Py 4
Interesting relations with the frame of information theory

d- Getting some hint on the error decay rate when n increases ?
Stein’s Lemma and Chernoff information

17



B.1. : Receiver operating characteristics : ROC curves

A good receiver : HIGH Pp, LOW Pr 4

Pp, Pr 4 depends upon the threshold n only.

Definition : the ROC curve is the parametric curve
Pp(n, q) plotted versus Pr4(n, q).

18



Example : test on the mean of a normal RV
(known identical variances under H;)

H
The log-LRT is simply expressed by x 21 Y

Ho
Hence,

| Ppa(n) =3 |1 - erf(;15)
| Po(n) =4 |1 - erf( )|

where erf(x) = \% J& exp(—t2)dt

7\

note that for n multiple indep. observations, the test reads
Hq
1sn 2. > ~ where 157 . 2. is a normal R.V. with same mean as z and va-
n ~1=1"1 E 2 n ~1=1"1
0
. 0—2
riance 2.

19



Example : ROC, test on mean of a normal R.V.

False alarm probability

(u = m.d1; under H;).

20



ROC properties

olfn—> o0, Pp=0and Ppy =0;lfn— —oco, Pp=1and Ppry = 1.

e ROC curve for a coin flip detector : diagonal line with unit slope (¢(z) = ¢ indep.
of the data) .

e ROC curve always lies above the chance line ; otherwise, flipping a coin has better performances.

e ROC curve of any LRT is concave (if the ROC was convex a randomized test would perform
better.)

e For differentiable ROC Pp(Pr4) , the threshold for the MP-LRT which lead to
the perf. Pra(n), Pp(n) is given by (letting g(x) stand for the LR in x)

d
dPra

g(n) = Pp(Pra)

21



Testing the increase in rate X\ of a Poisson R.V.

“Hq :therateis A\1"vs “Hp :therate is A\g” (A1 > A\g)

A)”
L($) = | — exp(Ao — )\1)
A0
" " . " Hl
Taking the log-likelihood functin for the test statistics, one gets x = ~
Hg
and
—1 M\%
{ Pra(i) =10 %o of
—1
Pp(n) =1-MX>"¢5

(notice that here both A\g and A1 are assumed to be known...)

22



test on the rate of Poisson R.V. : ROC

0.1F
) /{ M
o (

Ao = 3 (Hp) and A1 = 5 (H1); left plot : ROC for two values of A\
23



B.2. Detectatibility and min performances, Chernoff Bounds

Let
Pra(n) = /77 . PG,o,(9)dg = / T U (9 —mpag.e,(9)dg

— 00

then, fors > 0O

Pra< [ exp((g—ms)pc.ao(9)dg = exp(ns)h(s)

where h(s) = Eg[exp(—gs)] : moment generating function of the pdf of the test
statistics G.

Minimizing the rhs wrt s gives after some algebra the Chernoff Bound

/
Pp g < exp(nsg)h(sg) where n= };L((jé)))




Chernoff Bounds interpretation

Let u(s) = log(h(s)), then
_ h/(SO) _ d/'L(S) _ /(8)
= h(sg)  ds —F

o, (@) )
peo(w’)) , we get after some cal

hence, taking for the test statistics G(x) = log(

culation

Ppa < exp(u(s) —sp'(s)), s>0
po, (2)\°
u(s) = 109 [ (7255) P, (@)de = (1= 9)Ds(pgyIpoo)
where Dy is the Rényi info. divergence of order s.
Similar derivation for P leads to

(1 - Pp) =Py <exp(u(s) + (1 —s)u'(s)), s<1
24



Chernoff bounds are loose, alternative : study error decay rate

25



B.3. Hypothesis testing in an Information theoretic framework
Reformulate NP lemma (Simple hypothesis framework) :

d
let x ~@Q and X = {z1,...,zn} a set of n i.i.d. samples, test Q = Py vs

(Q = Pj,andforn >0
P (X) }
X1 = { >
Po(X)

Let o = Ppa = Po(X1) = [y, Po(X)dX
and 8 = Py = P1(Xp) = P1(XY]) = [y, P1(X)dX

Define another acceptance region

* Pl(X) *
M= {PO(X) = }

with corresponding (a*, 5*), then
o <a=p<p* equiv.to (7 =1-0")<(r=1-0)

where 7 d:ef power of the test
26



Alternate interpretation for LR test : IT Approach
Let X € X = Q2" be asetof ni.i.d. samples (z; € £2), with probability distribution
P(x,0;) = P;(x) under H,.

P1(X)
Po(X)

— log H P1(x;) Zn: log P1(x;)

9 Po(e) 2 09 Pola)

but for any function h of the r.v.

Z h(z;) =n ) Pr(@)h(z;)

xe2
where Py, (x) is defined by

Py (z) = Z 0(x — x;)

1=1

e P.(x) is the empirical histogram

27



Alternate interpretation for LR test -continued-
From the previous expression of the average of any function of the r.v,

Pi(X) __ P (x
=N .2ecQ sz(aj) log P;(:I:)Pzz(:c)
= n zeq Pr;(z) 109 ]]j;((:;)) —nY zeq Pr;(z) 109 1]%)((:;3%
= nD(Pyy () | Po(a)) - nD(Pry(x) || P(x))
and finally
Hy
D(Pr,(@) || Po(@) = D(Puy(@) || Pr(2)) = 510
0

e The accepted hypothesis is chosen according to the minimal divergence
between the empirical law and the law under each hypothesis.

28



Insights from IT
Reminder : Sanov and conditional limit theorems

>
Leta:gQandEQPand E
P* = inD(P
argminD(P || Q)
Sanov : Q"(E) = e "D(F7Q)
Cond Limit : Pr(z = a|Py, € E) = P*(a)

in propability for large n

This means
— Probability of E is close to proba. of P* (Sanov)
— Total probability of P, € E far from P~ is negligible (Cond.Lim)
— With high probability, P, is close to P* (Cond. Lim.)

29



Sanov and conditional limit theorems : some consequences

D
E
_ Py (X)
log LRT = log Pcl)(X)
= Yweq Pri(z)g(z)
where g(z) = nlog %g% @

Let £ = {P Plg=%_coP(x)g(x) > n}, then, using Lagrange multipliers

P*(z) =arg min D(P | Q) = cQ(z)e?(®)
Plg>n
> 4 Pla)=1

where )\ satisfies PL'¢ = n and ¢ is a normalizing constant.
30



Hq Hq
LRT(X) =2 ne Plg =1
H " Hp

AC

A={P:P§g<n’}

From Sanov th. (note A is convex) :

D(P||Py) — D(P||Py) = 7'

o = Po(Py, € A°) = e~ PGP0
8= Py(Py, € A) = e~"D(P}IIP1)

and from result of the previous slide, we get

P
/ N log =L / / _
P} =cPe¥9=cPie” "R =cPiTVPN = PP = Py = P,

31



Chernoff information
Question : what is the best error exponent for the Bayes criterion ? (assume that p(Hp) is known)

2.5 T T T T T T T T

Pr = p(Ho)Pra+ p(H1)Puy
= p(Ho)a + (1 — p(Ho)B

We have seen that LRT is optimal in this case,
SO previous results apply :

Pr = p(HO)e_nD(PAHPO) + (1 _ p(HO))e—nD(PAHPl)
— o—nMIn{D(R\[|F),D(P[|F1)}

-
- 3] ()

Relative entropy

o
(&)

— Apl—A
fﬁ —-Cfﬁf% % 01 02 03 04 05 06 07 08 09 1

Min in the decay rate exponent occurs when

def
D(Py || P1) = D(P || Po) = C(P1, Ro)

Equivalently
C(Pi, Py) = — min log (Z Pl’\(a)PolA(a)>

0<X<1
ac?

32



P(Hgp) unknown : non Bayesian case, the Stein Lemma

Reminder
d

X ={z1,...,z,} Where x; ~ Q, i.i.dand Q € {P1, Py}

a = Ppa = Po(X1), B = Py = P1(Ab)

Stein Lemma (csq of Sanov th.) :
VO <e < %,
define B = ming, then
C\(){<€
1

lim log Be = —D(Fp || P1)

1. D(Py || P1) is the best 8 exponent

2. ifinstead B < ¢ then
lim loga. = —D(P1 || Po)

n—oo

3. the most different P; is from P, the ea-
sier is the pb

4. ! D(Fo || A1) # D(P1 || Po)

33



Summary bounds on exponential decay rate

Distribution KL (Stein) Chernoff
D(F || P1) C(P1, Po)
£ = e_nD(POHPI) Pp = e_nC(Pla-PO)
- (m1—mq)? (m1—mq)?
Gaussian 5.2 52

(my1,mo,0°)

AM(1—r+rlogr)

A0

(r-1){10g(jz5%)~1}+log

log r

34



C - Composite hypothesis testing

Up to now : 6 or 87 could assume only one value : conditional pdfs were precisely
known under each H;.

this is however not the case in many applications

Example : Test presence vs absence of a sinusoidal signal with unknown phase
embedded in noise.

— The pdfs under H; depends on the values taken by 0; :
These random parameters are included in the hypotheses to be tested.

35



Let us consider the composite hypothesis testing problem
Hq @ f(z[Hg) = fo(z|0) = fy,(2),0 € Og
Hy @ f(z|H1) = f1(2]0) = fo,(x),0 € ©1
where 6 and 61 are unknown parameters vectors (possibly with comon comp.)
= HOW DO BAYES, nP, LRT approaches generalize ?

36



Bayes cost for cht

C = p(Ho) [x, Jo, fo,(x)Po(01)Coo(8)dbdx
+p(Ho) Jx, Jo, fo,(x)po(0)C10(8)dbdx
+p(H1) Jx, Jo, fo,(2)p1(0)Co1(6)dbdx
+p(H1) [x, Jo, fo,(®)p1(0)C11(0)dodx

but ¢ verifies

le f@o(m)dm = 1- fXO f@o(x)dx
le f@l (x)dx = 1- fXO f@l (QZ)dZU
thus

C = p(Ho) Jo,ro(0)C10(8)d0 + p(H1) o, p1(8)C11(0)d0
+ Jxy [P(H1) Jo, fo, (@)p1(0) [Co1(0) — C11(0)] O
~p(Ho) Jo, foo(@)po(9) [C10(0) — Coo(0)] d0] da
and the Bayes optimal test is
Jo, fo, (©)P1(6)[Co1(0)—C11(6)]d0 M1 (1)
feo fog (x)po(0)[C10(0)—Co0(6)]dO Ifo p(Hy)

37



notice : if C;5 do not depend upon 6, as

fo,()p1(0) = f1(x|0)p1(0) = f1(=,0)

and

foo(x)po(0) = fo(x|0)po(0) = fo(z,0)

the test takes the bayes sht expression, after the density marginals over 6 are
computed.

38



Example Letz € x be a set of n i.i.d. samples from a normal r.v. with mean

61 and variance o2 :

Test the simple null hypothesis Hy : 67 = O :

1 2 (@)?
Hp: f(x|Hp) = xr) = e 202
0+ (lHo) = fo() = (=
against
Hq{:600 #0:
1 i (w—01)?
252

Hy @ f(z|Hy) = fo,(2) = (V)

Bayes decision costs are Copg = C11 = 0,,Cp1(01) = 1,C10(01) = k,V0q
A priori knowledge about 64 is given by
1
p1(01) = — —m <01 <m
m

and we know p(Hp) = p(Hp) = 1/2
39



Solution
The sulfficient statistics 7 = %2?21 z; is used. T is a normal r.v. with variance °-
and mean 67 under Hq, zero under Hy.

Applying the preceding general results :

N =t
lo1 Gvan®  *7 wmm 1

n
ovan)®
and after some algebra

\f(m—:v)

)_F(\f(m—kx))) =
Hy

L(z)=e %(<

where
1 x t2

Fo) = /_ et

is the Laplace Gauss pdf.
40



L(x)
w

| | | | | | |
-0.5 0 0.5 1 15 2
moyenne empirique normalisée

=)
\

[

o

[N

Rapport de vraisemblance pour le test optimal de Bayes trait dans I'ex. précédent. (02 = 2;n =
8,k = C10 = 2). La zone grisée correspond a la région de décision ; = 0. Pour ce probleme, le
test de minimum de probabilité d’erreur de décision (k = 1) conduit a ne retenir Hg que siz = 0.
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C.1. UMP Test : definitions, existence

In general, no basis for picking 61 : UMP is a procedure to test composite hypothesis

Def : ¢ is the Most Powerful Test of size a(¢) if V¢’ of size «, then 5(¢) < B(¢')
Def : ¢ is the Most Powerful Test of level a, i.e. such that a(¢) < «, if V¢’ of level « (i.e.

a(¢) < a), then B(¢) < B(¢')

def : ¢* is UMP of level « if for any level « test or decision function ¢, the power (P(H1|H1) =
1 — () of the test verifies for all 6 € ©4,

Po=1—-p5"(61) = E@,l¢’] = E@,lol =1 — B(61)

— the test maximizes the detection probability (or power) independant of the value 6.

An UMP test does not always exist (ex. testing non-zero mean of a R.V. :the sign cannot be inte-
grated in any decision function).

42



e Necessary condition for existence of UMP : the likelihood must be a monotone increasing func-
tion of a sufficient test statistics.

def : Monotone Likelihood Ratio (MLR)
A model P(X|0) (with 6 is real valued), has Monotone Likelihood Ratio if there exists a real valued
function u(X) such that V6, > 6o,

LR = ig}gz% is monotone increasing fonction of (X)) on

{X : L(X|61) > 0 and L(X|6o) > 0O}

Then the higher the observed u(X), the more likely X was drawn from P(X |61) rather than from
P(X|6o)

Example (MLR), the exponential family

P(X,0) = exp{)_C(xz:) — A(0) Y T(x:) + nB(0)
then log LR =) T(x:)[A(61) — A(60)] + n[B(61) — B(6o)]

Let u(X) = > . T'(z;), then

TOOLR — [A((0) — A@0)] > 0

if A(.) is monotonic in 8. Note that (X)) is a sufficient statistic.
e Normal (known o) , Poisson, binomial, exponential are MLRP with u(X) = > . ;.



Example Consider the preceding problem studied as an example, but now,
no a priori knowledge about 64 is available.

The log-LRT for this problem is

where the threshold n depends upon the adopted strategy for the test. Equiva-
lently, the test is summarized by

with T = %Z?}zl x;, gaussian r.v. N/ (6, %2) (01 # 0 under Hq).
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Single sided test
The test is derived with the assumption that 61 > O
From the preceding, and by normalizing the statistics z, one gets

~ H

nx ‘11

=" > 5
0 Hj

The most powerful test of level at most « allows to determine ~ by

V/NnT

Ppg = a = Py( > )

and therefore
a=1-F(y), v=F1'1-a),
Finaly

nx H1 _
> F i (1-a)
o HO

44



e The decision function obtained does not depend upon 64, and the power is maxi-
mal (among all test of level at most «) : this test is UMP under assumption 81 > O.

o d = %ﬁ appears as a correction to the threshold for the test applied to nor-
malized statistics. d is sometimes referred to as the detectability index

_ E[T|H:] - E[T|Hy]
Jvaro(T)

where varg(T) is the variance of T under Hg. Incresed d leads to better test.

d

e Single sided test under assumption #; < O leads to symetrical results :

nI

Ho
> F i (1-a)
0  Hp

e The power curve for the SS test (9; > 0) crosses the vertical axis at Pp(01 =

0) = Ppa.
45



09l _ Po(6,). 8,<0 Po(8)). 8,50

o
o

Probabilité de détection
o
Ul

test bilatéral

o
S
T

o
w
T

o
)

o
=

No

N
wn
N
=
n
=
o
5
o
o
wn
=
=
3
[N}

25

Test power for the "non zero mean” detection problem 6; nof a random Gaussian process with
known variance . Solid lines are obtained for single sided UMP tests under each hypothesis for the
sign of 8;. Dashed line show the sub-optimal double-sided test power for a fixed Pr4. That test
does not require any hypothesis on the sign of 81 (02 = 2;n = 8).
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Double sided test: 0 = 0O

Motivation : if the assumption e.g. 1 > 0 is wrong, the single sided resulting test
is BIASED :
A decision test is said to be biaised if for some values of the parameters (say 6),

Pra(0) > Pp(0).

Approach :
vnz, Hi
— 2~
o HO

For this test Pr4 = o = 2(1 — F'(vy)), and therefore
87
—r 1=
g (1-3)

and the power of the test is

=155 ()

o

see the resulting powre curve on preceding figure.
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C.2. Possible strategies : general approaches and insights

e Define a locally optimal test, i.e. for small range of values of the unknown para-
meters : 0 ~ 0

e Define a restricted subset of decision functions (e.g. leading to unbiased tests)
the within which the solution is derived from some optimality criterion ;

e Determine the least favorable prior distribution w(8), to minimize the power of
the test :

B(w) = /@1 /leme)w(e)dedw

... most often very difficult to find.
e Popular alternative : Generalized Likelihood ratio test
The unknown parameters are replaced by some estimated values
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LMP single sided Test

HOI(9=90
Hqi:0> 6y but 0 ~ 0

Expand the power around 6 :

OPp(¢,0)
006

Pp(9,0) = [, 1(z,0)¢(x)dz = Pp(#,60) + (6 ~ 0o) 9
0

where Pp(¢0g) = Pr () ; Thus, maximize Pd(¢,0) < maximize

OPp(¢,0)| O Jx, &(x)f(z,0)dx| of(x,0)
00 o 99 _/Xl ) =5

dx
0o

0o
Using Lagrange multipliers,
£(9) = Jx, (o) Li5Pdal, —n(1 — [, $(2) fo(x)dz —a)

= Jn @) | 2§50 da|, ~ nfo(@)|dw —na

which is max if the braketed term is always > O;
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LMP single sided test, cont’'nd
the test is therefore given by

8f1 (3779)

o0 ’90 olog f(xz,0)| M1
= 2 1
fo(x) 06 6o Ho

e Hy is accepted if the log-likelihood is close to a stationnary point, i.e. the ML
estimate of 6.

e This test recovers exactly the solution exhibited for UMP single side test in the
previous example.
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LMP Double sided Test, cont'nd

The solution is seeked among the set of unbiaised tests
= add the unbiaseness constraint !

Property : If ¢ leads to un unbiased test, then P (¢, 6) has a global minimum for
0 = 0.

The constraint may then be expressed

OE1(9)| _ OJx ¢(2)f(z,0)dx| 5
oL, 06 oL, 06
and in order to maximize Pp (¢, 0) when 6 varies :
BPE1(¢)| 9% [y $(2) f(x,0)dx
002 o 062 o
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LMP Double sided Test, cont’'nd
Construct the Lagrange function :

L) =y o(2) PLED|  da
0
M (1= [y, #(@) f(,0)dx — o) —n [x, L5 9)|90

2 ZE
= Iy ¢@ [—@ b |~ MoCe) =0 2H50 ] dz + Ao — A
0

which is max if

0% f(x,0)
2 H
80 00 >]_

n
GO+ pf(x,0) Ho

where n et p = \/n are set to match the constraints.
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LMP Double sided Test, cont’'nd

Form the test on the means of normal random variables (see preceding example),

_ n(z—6)2
F,0) = L e 22
V21O

then by subtitution
72 _ 52/ H
< —o0°/n 1

—_ <
o?/n — pT H,

n

and fixing p = 0, one gets
Hy
z| 2 oyn+1/vn="0/Vn

Hg
which was previously obtained...
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LMP Double sided Test, cont’'nd

These results generalize starightforwardly ;-) to the multiple unknown parameters
case :

unbiased test constraint :

| VEZlol|; lI=0
Maximal concavity constraint :
tr V°E4{¢]| . Max
o
Resulting test
tr sz(a:,e) " Hy
0o

=
fo@) + o [ V(.05 i |
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Neyman-Pearson MinMax test

IDEA | : Maximize the power of the test for the least favorable distribution of the
unknown parameters

Find p§(6) and p3(0) in order to

Maximize /@1 /Xl F1(2|0)p% (0)d0

with the constraint on the level of the test

/@o /Xl fo(x]0)pg(0)do < o

Problems

o if p§(0) concentrates upon very unlikely (atypical) values, the test may be very
poor (low power).

e p5(0) and p3 (6) may extremely difficult to find.

Classical example : detection of a sinusoidal signal with unknown phase v ; ¢ €
[0, 2] is the least favorable dist.
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Generalized LRT

e “ad-hoc” detector
e “plug-in” receiver
e in general, no optimilaty is asserted

most commonly : the unknown parameters are replaced by their “maximum likeli-
hood” estimates

maX9€@1p(aZ,9) Iil

poo(®) g g

LgrLr =

(notice that in our case Hy is a simple hypothesis, and no plug in estimate is necessary under
Hp).
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GLRT asymptotics

— As the nb. of indep. obs. n — oo, the ML estimate 61,7, is a consistent
estimator of 61, the GLRT is asymptotically UMP.

— The GLR statistic has a Chi-square limiting distribution : if pg, (x) is smooth
(under Hp), it can be shown that for large n

2109 Lgrp ~ Xg

p= nb. of components of the unknown parameter 61, which are relevant in
for the test under consideration
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GLRT asymptotics : proof of convergence toward the X2 law
(Hg is simple and 6 is a scalar)
eLet O, an ML estimate from a set « of n i.i.d. observations.

log L(z,60) = log L(x,0)

+(00 — On) 55109 L(2, 0r) + 3(00 — 00)%2, 892 log L(z, 6%)

where 6* ¢ [0, 0r].
e 0, is the ML estimate = % log L(x,0,) =0
eBy the law of large numbers, noticing that MLE is consistent, for n — oo,

g*—>90

LS 2100 £ 0) - By [ 23108 fo@)] = 1o

where Ij is the Fisher information of the sample for estimating 6.
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GLRT asymptotics : proof of convergence, continued.
From estimation theory :

\/nlo(8n — 60) — N'(0,1)
thus
nlp(On — 0g)? — X7
and by inserting this in the previous expansion of the log-likelihood

2log L(x,0p) — X7

if £ is not a smooth function of 6g.... -(
Approximate statistics with e.g. Gram Charlier or Edgeworth expansions
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This course : test HO agains H1, in a single (or multiple, with not that many) hy-
pothesis framework

What happens for hundreds or thousands of possible instances, possibly depar-
ting from HO ?

Next Lecture : multiple hypothesis testing and false discovery rate control
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