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A1. The detection problem : formulation

Observe x ∈ Ω where x
d' Q, Q ∈ {P1, P0}

or
Observe : X = {x1, . . . , xn} ∈ X , n i..i.d. realizations,

thus X = Ωn and X
d' Qn ∈ {Pn1 , P

n
0 }

Problem statement : Design a “receiver” that makes as few errors as possible, in
deciding
for the SIMPLE hypothesis framework (no unknown parameters) :

 H0 : X
d' Pn0

H1 : X
d' Pn1

or for the COMPOSITE hypothesis framework : (unknown parameters)

 H0 : X
d' Pn0 (X, θ0), θ0 ∈ Θ0

H1 : X
d' Pn1 (X, θ1), θ1 ∈ Θ1 3



The detection problem : formulation, cont’nd

• The choices H0, H1 are mutually exclusive
• The receiver ALWAYS makes a choice

→ Design a decision function φ, which expresses a partition of X

X0 = {x : φ(x) = 0 : decide H0} Rejection region

X1 = {x : φ(x) = 1 : decide H1} Acceptance region

where

X1 = X c0 and X1 ∪ X0 = X
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A.2. Detection errors

For the binary hypothesis testing problem , 2 kinds of errors :

False Alarm (FA) and Miss (M)

PFA(θ0) =
∫
X1

Pn0 (X, θ0)dX = EP0
[φ] , θ0 ∈ Θ0

PM(θ1) =
∫
X0

Pn1 (X, θ1)dX = 1−
∫
X1

Pn1 (X, θ1)dX = EP1
[1−φ] , θ1 ∈ Θ1

The correct detection probability is expressed by PD = 1− PM , θ ∈ Θ1.
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A.3. Example : test on the mean of a gaussian observation

Let x be a normal R.V. wich has pdf pθi(x) under Hi, i ∈ {0,1}


P0(x|θ0) = pθ0

(x) = 1
σ
√

2π
exp(− x2

2σ2) under H0

P1(x|θ1) = pθ1
(x) = 1

σ
√

2π
exp(−(x−m)2

2σ2 ) under H1

where σ2 and m are known.

Here, n = 1, Θ0 = {0} and Θ1 = {m}
p(θ0) = δ(θ0) and p(θ1) = δ(θ1 −m)

→ The test resumes to compare x to a threshold η :
X0 =]−∞, η] and X1 =]η,∞[ ;
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Another example

Detecting a change in the rate of a random Poisson process
— CCD , 256 pixels on a unique line
— Background noise : Poisson process of rate f = 2

— Random Signal : Poisson process of rate λ = h×“Airy PSF” , r = 5,
h
f = 2 ;
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Illustration Generalized Max likelihood

0 50 100 150 200 250
0

2

4

6

8

10

Signal received under H
0

Pixel index

re
ce

iv
ed

 p
ho

to
ns

0 50 100 150 200 250
0

2

4

6

8

10

Pixel index

re
ce

iv
ed

 p
ho

to
ns

Moyenne sous H1

0 50 100 150 200 250 300
1

2

3

4

5

6

7

8

9

10

estimated position (pixel)

es
tim

at
ed

 ru
pt

ur
e 

am
pl

itu
de

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Probability

D
et

ec
tio

n 
Pr

ob
ab

ilit
y

Receiver Operating Characteristic

Signal model (H0, H1) Perf. (position,amplitude) ROC

H0 : λ = cste = f = 2 ; H1 : r=5,n1=100,amp=4

9



A. 4. Binary hypothesis testing strategy :
Bayes approach for designing of the minimum error receiver
Maximize the probability of correct classification, PC

! ! PRIORS ! ! : ({P (H0), P (H1)}), or prior density p(θi) and pθi(x)

PC =
∑
i=0,1

P (Hi)
∫
Xi

∫
Θi

pθi(x)p(θi)dθidx

Rk : Maximizing PC amounts to define Bayes cost functions
C11(θ1) = C00(θ0) = 0 and C10(θ0) = C01(θ1) = 1, ∀θ1, ∀θ0

where Cij is the cost of deciding Hi when Hj is true.

This leads to select the hypothesis with the largest posterior probability
→ evaluate

p(Hi|x) =
P (Hi).p(x|Hi)

pX (x)

hence, the MAP test is expressed by a LR Test

L(x) =
p(x|H1)

p(x|H0)

H1
≷
H0

p(H0)

p(H1)
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A.5. Case of Multiple hypothesis testing-1- (skip next 3 slides ?)

H0 : θ0 ∈ Θ0 [x ' pθ0
(x), θ ∈ Θ0]

...
HM : θM ∈ ΘM [x ' pθM(x), θ ∈ ΘM ]

The decision function φ(x) = [φ1(x), . . . , φM(x)]T verifies

φ(x) ∈ {0,1}∀x ∈ X∑M
i=1 φi(x) = 1∀x ∈ X

Let Cij = cost to decide Hi when Hj is true, and p(Ĥi|Hj) the proba of such
decision

C =
∑M
i,j=1Cijp(Ĥi|Hj)p(Hj)
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Multiple hypothesis testing, cont’nd-

Consider the case

Cii = 0 i ∈ {1, . . . ,M}
Cij = 1, i 6= j, i, j ∈ {1, . . . ,M}

The Perr equals Bayes’s risk :

C =
∑M
i 6=j=1Cijp(Ĥi|Hj)p(Hj)

= 1−
∑M
i=1Ciip(Ĥi|Hi)p(Hi)

= 1−
∑M
i=1Ciip(Hi)

∫
Xi p(x|Hi)dx

where p(x|Hi) =

∫
Θi
p(x,θ)dθ

p(Hi)

C is minimal if ∀i ∈ {1, . . . ,M}, Xi are such that

x ∈ Xi ⇔ p(Hi)p(x|Hi) ≥ p(Hj)p(x|Hj) j 6= i

Thus the decision rule

Ĥi = ArgMaxHj

[
p(Hj)p(x|Hj)

]
= ArgMaxHj

[
p(Hj|x)

]
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Multiple hypothesis testing, cont’nd

Decision rules are non transitive in general

For example

H1vsH2 → Ĥ2
H2vsH3 → Ĥ3
H1vsH3 → Ĥ1

But, as the LR for the thest Hi vs Hj is Lij = f(x|Hi)
f(x|Hj)

,

Lik(x) = Lij(x)Ljk(x)

The decision rule Lij(x)
H1
≷
H0

ηij, shows that transitivity is obtained if

ηik = ηijηjk ⇔
(Cji − Cii)
(Cij − Cjj)

(Ckj − Cjj)
(Cjk − Ckk)

=
(Cki − Cii)
(Cik − Ckk)
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BUT .. if no available prior ({P (H0), P (H1)}), and densities pθi)

A.6. The neymann pearson framework

Constrain max|θ∈Θ0
PFA(θ) ≤ α and maximize PD(θ)|θ∈Θ1

maximal.

neymann Pearson Lemma The most powerfull test (MP) of level α ∈ [0,1] is a
randomized LRT of the form

φ(x) =


1, pθ1

(x) > ηpθ0
(x)

q, pθ1
(x) = ηpθ0

(x)
0, pθ1

(x) < ηpθ0
(x)

where the parameters η and q are choosen to satisfy the constraint Eθ0
[φ] = α
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⇒ Likelihood ratio tests

Summarizing :

If known priors p(Hi) and Cij → Bayes approach→ LRT with “well defined thre-
shold” η : Min-error or min-cost test

If unknown priors p(Hi) but known Cij → Bayes approach → LRT with η(p0)

where p0 minimizes the maximal (worst case) bayes cost.

Otherwise→ NP approach→ LRT with η satisfying constraints on PFA :
Most powerfull test of level α = PFA

Evaluation of the performances ?
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B. Evaluating signal detectability, or the performances of a test

Assume that n indep. observations xi are available ;
Take for the test statistics e.g ;

G =
n∑
i=1

logL(xi)

ROC computation requires the evaluation of

PFA =
∫ ∞
η

pG,θ0
(g)dg and PD =

∫ ∞
η

pG,θ1
(g)dg

where pG,θi(g)dg = pdf of the test statistics G under hypothesis Hi.

In most cases : no closed form expressions for these integrals...
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(Evaluating signal detectability, or the performances of a test, cont’nd)

Note : For next section : Both hypothesis are simple

Signal detectability ?
a- ROC, either by direct calculation or by numerical methods

( not in this course) b- Methods relying upon limited expensions of the stats.
around the normal distribution : ∼ more accurate for large n ;
rely upon CLT→ accuracy obtained only if η ' G

c- Minimal performances Chernoff Bounds :
Give lower bound for PD and upper bound for PFA
Interesting relations with the frame of information theory

d- Getting some hint on the error decay rate when n increases ?
Stein’s Lemma and Chernoff information

17



B.1. : Receiver operating characteristics : ROC curves

A good receiver : HIGH PD, LOW PFA

PD, PFA depends upon the threshold η only.

Definition : the ROC curve is the parametric curve
PD(η, q) plotted versus PFA(η, q).
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Example : test on the mean of a normal RV
(known identical variances under Hi)

The log-LRT is simply expressed by x
H1
≷
H0

γ

Hence, 
PFA(η) = 1

2

[
1− erf( η

σ
√

2
)
]

PD(η) = 1
2

[
1− erf(η−m

σ
√

2
)
]

where erf(x) = 2√
π

∫ x
0 exp(−t2)dt

note that for n multiple indep. observations, the test reads
1
n

∑n
i=1 xi

H1
≷
H0

γ where 1
n

∑n
i=1 xi is a normal R.V. with same mean as x and va-

riance σ2

n .
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Example : ROC, test on mean of a normal R.V.
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ROC properties

• If η →∞, PD = 0 and PFA = 0 ; If η → −∞, PD = 1 and PFA = 1.

• ROC curve for a coin flip detector : diagonal line with unit slope (φ(x) = q indep.
of the data) .

•ROC curve always lies above the chance line ; otherwise, flipping a coin has better performances.

• ROC curve of any LRT is concave (if the ROC was convex a randomized test would perform
better.)

• For differentiable ROC PD(PFA) , the threshold for the MP-LRT which lead to
the perf. PFA(η), PD(η) is given by (letting g(x) stand for the LR in x)

g(η) =
d

dPFA
PD(PFA)

21



Testing the increase in rate λ of a Poisson R.V.

“H1 : the rate is λ1” vs “H0 : the rate is λ0” (λ1 > λ0)

L(x) =

(
λ1

λ0

)x
exp(λ0 − λ1)

Taking the log-likelihood functin for the test statistics, one gets x
H1
≷
H0

γ

and  PFA(η) = 1− λ0
∑η−1
x=0

λx0
x!

PD(η) = 1− λ1
∑η−1
x=0

λx1
x!

(notice that here both λ0 and λ1 are assumed to be known...)
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test on the rate of Poisson R.V. : ROC
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B.2. Detectatibility and min performances, Chernoff Bounds

Let

PFA(η) =
∫ ∞
η

pG,θ0
(g)dg =

∫ ∞
−∞

U(g − η)pG,θ0
(g)dg

then, for s ≥ 0

PFA ≤
∫ ∞
−∞

exp((g − η)s)pG,θ0
(g)dg = exp(ηs)h(s)

where h(s) = EG[exp(−gs)] : moment generating function of the pdf of the test
statistics G.

Minimizing the rhs wrt s gives after some algebra the Chernoff Bound

PFA ≤ exp(ηs0)h(s0) where η = h′(s0)
h(s0)



Chernoff Bounds interpretation

Let µ(s) = log(h(s)), then

η =
h′(s0)

h(s0)
=
dµ(s)

ds
= µ′(s)

hence, taking for the test statistics G(x) = log(
pθ1(x)

pθ0(x)) , we get after some cal-

culation 
PFA ≤ exp(µ(s)− sµ′(s)), s ≥ 0

µ(s) = log
∫
X

(
pθ1(x)

pθ0(x)

)s
psθ0

(x)dx = (1− s)Ds(pθ1
||pθ0

)

where Ds is the Rényi info. divergence of order s.

Similar derivation for PD leads to

(1− PD) = PM ≤ exp(µ(s) + (1− s)µ′(s)), s ≤ 1
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Chernoff bounds are loose, alternative : study error decay rate
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B.3. Hypothesis testing in an Information theoretic framework
Reformulate NP lemma (Simple hypothesis framework) :

Let x
d
' Q and X = {x1, . . . , xn} a set of n i.i.d. samples, test Q = P0 vs

Q = P1, and for η ≥ 0

X1 =

{
P1(X)

P0(X)
> η

}

Let α = PFA = P0(X1) =
∫
X1
P0(X)dX

and β = PM = P1(X0) = P1(X c1) =
∫
X0
P1(X)dX

Define another acceptance region

X ?1 =

{
P1(X)

P0(X)
> η?

}
with corresponding (α?, β?), then

α? ≤ α⇒ β ≤ β? equiv. to (π? = 1− β?) ≤ (π = 1− β)

where π def
= power of the test
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Alternate interpretation for LR test : IT Approach
LetX ∈ X = Ωn be a set of n i.i.d. samples (xi ∈ Ω), with probability distribution
P (x, θj) = Pj(x) under Hj.

log
P1(X)

P0(X)
= log

n∏
i=1

P1(xi)

P0(xi)
=

n∑
i=1

log
P1(xi)

P0(xi)

but for any function h of the r.v.
n∑
i=1

h(xi) = n
∑
x∈Ω

Pxi(x)h(xi)

where Pxi(x) is defined by

Pxi(x) =
n∑
i=1

δ(x− xi)
n

• Pxi(x) is the empirical histogram
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Alternate interpretation for LR test -continued-
From the previous expression of the average of any function of the r.v,

log P1(X)
P0(X) = n

∑
x∈Ω Pxi(x) log P1(x)

P0(x)

= n
∑
x∈Ω Pxi(x) log

P1(x)Pxi(x)
P0(x)Pxi(x)

= n
∑
x∈Ω Pxi(x) log P1(x)

Pxi(x) − n
∑
x∈Ω Pxi(x) log P0(x)

Pxi(x)

= nD(Pxi(x) ‖ P0(x))− nD(Pxi(x) ‖ P1(x))

and finally

D(Pxi(x) ‖ P0(x)−D(Pxi(x) ‖ P1(x))
H1
≷
H0

1
n log η

• The accepted hypothesis is chosen according to the minimal divergence
between the empirical law and the law under each hypothesis.
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Insights from IT
Reminder : Sanov and conditional limit theorems

Let x
d' Q and E ⊆ P and

P ? = argmin
P∈E

D(P ‖ Q)

Sanov : Qn(E)
.

= e−nD(P ?‖Q)

Cond Limit : Pr(x = a|Pxi ∈ E) = P ?(a)

in propability for large n

This means
— Probability of E is close to proba. of P ? (Sanov)
— Total probability of Pxi ∈ E far from P ? is negligible (Cond.Lim)
— With high probability, Pxi is close to P ? (Cond. Lim.)
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Sanov and conditional limit theorems : some consequences

log LRT = log P1(X)
P0(X)

=
∑
x∈Ω Pxi(x)g(x)

where g(x) = n log P1(x)
P0(x)

Let E =
{
P : PTg =

∑
x∈Ω P (x)g(x) ≥ η

}
, then, using Lagrange multipliers

P ?(x) = arg min
PT g≥η∑
a P (a)=1

D(P ‖ Q) = cQ(x)eλg(x)

where λ satisfies PTg = η and c is a normalizing constant.
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LRT(X)
H1
≷
H0

η ⇔ PTxig
H1
≷
H0

η′

A =
{
P : PTxig < η′

}
From Sanov th. (note A is convex) :

α = P0(Pxi ∈ Ac)
.

= e−nD(P ?0 ||P0)

β = P1(Pxi ∈ A)
.

= e−nD(P ?1 ||P1)

and from result of the previous slide, we get

P ?1 = cP1eλ
′g = cP1e

λ′ log
P1
P0 = cP1+λ′

1 P0
λ′ = cPλ1P

1−λ
0 = P ?0 = Pλ

31



Chernoff information
Question : what is the best error exponent for the Bayes criterion ? (assume that p(H0) is known)

PE = p(H0)PFA + p(H1)PM
= p(H0)α+ (1− p(H0)β

We have seen that LRT is optimal in this case,
so previous results apply : PE

.
= p(H0)e−nD(Pλ‖P0) + (1− p(H0))e−nD(Pλ‖P1)
.

= e−nmin{D(Pλ‖P0),D(Pλ‖P1)}

Pλ = cP λ
1P

1−λ
0

Min in the decay rate exponent occurs when

D(Pλ ‖ P1) = D(Pλ ‖ P0)
def
= C(P1, P0)

Equivalently

C(P1, P0) = − min
0≤λ≤1

log

(∑
a∈Ω

P λ
1 (a)P 1−λ

0 (a)

)
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P (H0) unknown : non Bayesian case, the Stein Lemma

Reminder

X = {x1, . . . , xn} where xi
d
' Q, i.i.d and Q ∈ {P1, P0}

α = PFA = P0(X1), β = PM = P1(X0)

Stein Lemma (csq of Sanov th.) :
∀0 < ε < 1

2,
define βε = min

α<ε
X1

β, then

lim
n→∞ logβε = −D(P0 ‖ P1)

1. D(P0 ‖ P1) is the best β exponent

2. if instead β < ε then
lim
n→∞

logαε = −D(P1 ‖ P0)

3. the most different P1 is from P0, the ea-
sier is the pb

4. ! ! D(P0 ‖ P1) 6= D(P1 ‖ P0)
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Summary bounds on exponential decay rate

Distribution KL (Stein) Chernoff
D(P0 ‖ P1) C(P1, P0)

β
.

= e−nD(P0‖P1) PE
.

= e−nC(P1,P0)

Gaussian (m1−m0)2

2σ2
(m1−m0)2

8σ2

(m1,m0, σ
2)

Poisson λ1(1− r + r log r) λ0
(r−1)

{
log( r−1

log r)−1
}

+log r

log r

r = λ0
λ1
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C - Composite hypothesis testing

Up to now : θ0 or θ1 could assume only one value : conditional pdfs were precisely
known under each Hi.

this is however not the case in many applications

Example : Test presence vs absence of a sinusoı̈dal signal with unknown phase
embedded in noise.

→ The pdfs under Hi depends on the values taken by θi :
These random parameters are included in the hypotheses to be tested.
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Let us consider the composite hypothesis testing problem

H0 : f(x|H0) = f0(x|θ) = fθ0
(x), θ ∈ Θ0

H1 : f(x|H1) = f1(x|θ) = fθ1
(x), θ ∈ Θ1

where θ0 and θ1 are unknown parameters vectors (possibly with comon comp.)
⇒ HOW DO BAYES, nP, LRT approaches generalize ?
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Bayes cost for cht

C = p(H0)
∫
X0

∫
Θ0

fθ0
(x)p0(θ1)C00(θ)dθdx

+p(H0)
∫
X1

∫
Θ0

fθ0
(x)p0(θ)C10(θ)dθdx

+p(H1)
∫
X0

∫
Θ1

fθ1
(x)p1(θ)C01(θ)dθdx

+p(H1)
∫
X1

∫
Θ1

fθ1
(x)p1(θ)C11(θ)dθdx

but φ verifies ∫
X1
fθ0

(x)dx = 1−
∫
X0
fθ0

(x)dx∫
X1
fθ1

(x)dx = 1−
∫
X0
fθ1

(x)dx

thus

C = p(H0)
∫
Θ0

p0(θ)C10(θ)dθ + p(H1)
∫
Θ1

p1(θ)C11(θ)dθ

+
∫
X0

[
p(H1)

∫
Θ1

fθ1
(x)p1(θ) [C01(θ)− C11(θ)] dθ

−p(H0)
∫
Θ0

fθ0
(x)p0(θ) [C10(θ)− C00(θ)] dθ

]
dx

and the Bayes optimal test is∫
Θ1

fθ1(x)p1(θ)[C01(θ)−C11(θ)]dθ∫
Θ0

fθ0(x)p0(θ)[C10(θ)−C00(θ)]dθ

H1
≷
H0

p(H0)
p(H1)

37



notice : if Cij do not depend upon θ , as

fθ1
(x)p1(θ) = f1(x|θ)p1(θ) = f1(x, θ)

and

fθ0
(x)p0(θ) = f0(x|θ)p0(θ) = f0(x, θ)

the test takes the bayes sht expression, after the density marginals over θ are
computed.
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Example Let x ∈ X be a set of n i.i.d. samples from a normal r.v. with mean
θ1 and variance σ2 :
Test the simple null hypothesis H0 : θ1 = 0 :

H0 : f(x|H0) = f0(x) =
1

(σ
√

2π)n
e
−
∑n
i=1(xi)

2

2σ2

against
H1 : θ1 6= 0 :

H1 : f(x|H1) = fθ1
(x) =

1

(σ
√

2π)n
e
−
∑n
i=1(xi−θ1)2

2σ2

Bayes decision costs are C00 = C11 = 0, , C01(θ1) = 1, C10(θ1) = k,∀θ1

A priori knowledge about θ1 is given by

p1(θ1) =
1

m
,−m ≤ θ1 ≤ m

and we know p(H0) = p(H1) = 1/2

39



Solution
The sufficient statistics x = 1

n

∑n
i=1 xi is used. x is a normal r.v. with variance σ2

n
and mean θ1 under H1, zero under H0.

Applying the preceding general results :

∫
Θ1

√
n

(σ
√

2π)
e
−n(xi−θ1)2

2σ2 1
mdθ

k
√
n

(σ
√

2π)
e
−
nx2
i

2σ2

H1
≷
H0

1

and after some algebra

L(x) = e
x2
2

(
F (

√
n(m− x)

σ
)− F (

√
n(m+ x)

σ
)

)
H1
≷
H0

k

where

F (x) =
1√
2π

∫ x
−∞

e−
t2
2 dt

is the Laplace Gauss pdf.
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Rapport de vraisemblance pour le test optimal de Bayes trait dans l’ex. précédent. (σ2 = 2;n =
8,k = C10 = 2). La zone grisée correspond à la région de décision θ1 = 0. Pour ce problème, le
test de minimum de probabilité d’erreur de décision (k = 1) conduit à ne retenir H0 que si x = 0.
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C.1. UMP Test : definitions, existence

In general, no basis for picking θ1 : UMP is a procedure to test composite hypothesis

Def : φ is the Most Powerful Test of size α(φ) if ∀φ′ of size α, then β(φ) ≤ β(φ′)
Def : φ is the Most Powerful Test of level α, i.e. such that α(φ) ≤ α, if ∀φ′ of level α (i.e.
α(φ) ≤ α), then β(φ) ≤ β(φ′)

def : φ? is UMP of level α if for any level α test or decision function φ, the power (P (Ĥ1|H1) =
1− β) of the test verifies for all θ ∈ Θ1,

P?α = 1− β?(θ1) = E(θ1)[φ
?] ≥ E(θ1)[φ] = 1− β(θ1)

→ the test maximizes the detection probability (or power) independant of the value θ1.

An UMP test does not always exist (ex. testing non-zero mean of a R.V. :the sign cannot be inte-
grated in any decision function).
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• Necessary condition for existence of UMP : the likelihood must be a monotone increasing func-
tion of a sufficient test statistics.

def : Monotone Likelihood Ratio (MLR)
A model P (X|θ) (with θ is real valued), has Monotone Likelihood Ratio if there exists a real valued
function u(X) such that ∀θ1 > θ0,
LR = P (X|θ1)

P (X|θ0)
is monotone increasing fonction of u(X) on

{X : L(X|θ1) > 0 and L(X|θ0) > 0}

Then the higher the observed u(X), the more likely X was drawn from P (X|θ1) rather than from
P (X|θ0)

Example (MLR), the exponential family

P (X, θ) = exp{
∑
i

C(xi)−A(θ)
∑
i

T (xi) + nB(θ)

then logLR =
∑
i

T (xi)[A(θ1)−A(θ0)] + n[B(θ1)−B(θ0)]

Let u(X) =
∑

i T (xi), then

∂ logLR

∂u
= [A((θ1)−A(θ0)] > 0

if A(.) is monotonic in θ. Note that u(X) is a sufficient statistic.
• Normal (known σ) , Poisson, binomial, exponential are MLRP with u(X) =

∑
i xi.



Example Consider the preceding problem studied as an example, but now,
no a priori knowledge about θ1 is available.

The log-LRT for this problem is

σ2n−1 logL(x) =
θ1

n

n∑
i=1

xi −
θ2

1

2

H1
≷
H0

η

where the threshold η depends upon the adopted strategy for the test. Equiva-
lently, the test is summarized by

θ1x
H1
≷
H0

η′

with x = 1
n

∑n
i=1 xi, gaussian r.v. N (θ, σ

2

n ) (θ1 6= 0 under H1).
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Single sided test
The test is derived with the assumption that θ1 > 0

From the preceding, and by normalizing the statistics x, one gets

T =

√
nx

σ

H1
≷
H0

γ

The most powerful test of level at most α allows to determine γ by

PFA = α = P0(

√
nx

σ
> γ)

and therefore

α = 1− F (γ), γ = F−1(1− α),

Finaly
√
nx

σ

H1
≷
H0

F−1(1− α)
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• The decision function obtained does not depend upon θ1, and the power is maxi-
mal (among all test of level at most α) : this test is UMP under assumption θ1 > 0.

• d = θ1
√
n

σ appears as a correction to the threshold for the test applied to nor-
malized statistics. d is sometimes referred to as the detectability index

d =
IE [T |H1]− IE [T |H0]√

var0(T )

where var0(T ) is the variance of T under H0. Incresed d leads to better test.

• Single sided test under assumption θ1 < 0 leads to symetrical results :
√
nx

σ

H0
≷
H1

F−1(1− α)

• The power curve for the SS test (θ1 > 0) crosses the vertical axis at PD(θ1 =

0) = PFA.
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Double sided test : θ 6= 0
Motivation : if the assumption e.g. θ1 > 0 is wrong, the single sided resulting test
is BIASED :
A decision test is said to be biaised if for some values of the parameters (say θ),
PFA(θ) > PD(θ).

Approach :

|
√
nx

σ
|
H1
≷
H0

γ

For this test PFA = α = 2(1− F (γ)), and therefore

γ = F−1(1−
α

2
)

and the power of the test is

PD(θ1) = 1−
(
F

(
γ −

θ1
√
n

σ

)
− F

(
−γ −

θ1
√
n

σ

))
see the resulting powre curve on preceding figure.
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C.2. Possible strategies : general approaches and insights

• Define a locally optimal test, i.e. for small range of values of the unknown para-
meters : θ ' θ0

• Define a restricted subset of decision functions (e.g. leading to unbiased tests)
the within which the solution is derived from some optimality criterion ;
• Determine the least favorable prior distribution w(θ), to minimize the power of
the test :

β(w) =
∫

Θ1

∫
X1

p(x|θ)w(θ)dθdx

... most often very difficult to find.
• Popular alternative : Generalized Likelihood ratio test
The unknown parameters are replaced by some estimated values
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LMP single sided Test

H0 : θ = θ0
H1 : θ > θ0 but θ ' θ0

Expand the power around θ0 :

PD(φ, θ) =
∫
X1

f(x, θ)φ(x)dx ' PD(φ, θ0) + (θ − θ0)
∂PD(φ, θ)

∂θ

∣∣∣∣∣
θ0

where PD(φθ0) = PFA(φ) ; Thus, maximize Pd(φ, θ)⇔ maximize

∂PD(φ, θ)

∂θ

∣∣∣∣∣
θ0

=
∂
∫
X1
φ(x)f(x, θ)dx

∂θ

∣∣∣∣∣
θ0

=
∫
X1

φ(x)
∂f(x, θ)

∂θ

∣∣∣∣∣
θ0

dx

Using Lagrange multipliers,

L(φ) =
∫
X1
φ(x) ∂f(x,θ)

∂θ dx
∣∣∣
θ0
− η(1−

∫
X1
φ(x)f0(x)dx− α)

=
∫
X1
φ(x)

[
∂f(x,θ)
∂θ dx

∣∣∣
θ0
− ηf0(x)

]
dx− ηα

which is max if the braketed term is always > 0 ;
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LMP single sided test, cont’nd

the test is therefore given by

∂f1(x,θ)
∂θ

∣∣∣
θ0

f0(x)
=
∂ log f(x, θ)

∂θ

∣∣∣∣∣
θ0

H1
≷
H0

η

• H0 is accepted if the log-likelihood is close to a stationnary point, i.e. the ML
estimate of θ0.

• This test recovers exactly the solution exhibited for UMP single side test in the
previous example.
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LMP Double sided Test, cont’nd

The solution is seeked among the set of unbiaised tests
⇒ add the unbiaseness constraint !

Property : If φ leads to un unbiased test, then PD(φ, θ) has a global minimum for
θ = θ0.

The constraint may then be expressed

∂E1(φ)

∂θ

∣∣∣∣∣
θ0

=
∂
∫
X1
φ(x)f(x, θ)dx

∂θ

∣∣∣∣∣
θ0

= 0

and in order to maximize PD(φ, θ) when θ varies :

∂2E1(φ)

∂θ2

∣∣∣∣∣
θ0

=
∂2 ∫
X1
φ(x)f(x, θ)dx

∂θ2

∣∣∣∣∣∣
θ0

Max
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LMP Double sided Test, cont’nd

Construct the Lagrange function :

L(φ) =
∫
X1
φ(x) ∂

2f(x,θ)
∂θ2

∣∣∣∣
θ0

dx

−λ
(
1−

∫
X1
φ(x)f(x, θ)dx− α

)
− η

∫
X1

∂f(x,θ)
∂θ

∣∣∣
θ0
dx

=
∫
X1
φ(x)

[
∂2f(x,θ)
∂θ2

∣∣∣∣
θ0

− λf0(x)− η ∂f(x,θ)
∂θ

∣∣∣
θ0

]
dx+ λα− λ

which is max if
∂2f(x,θ)
∂θ2

∣∣∣∣
θ0

∂f(x,θ)
∂θ

∣∣∣
θ0

+ ρf(x, θ)

H1
≷
H0

η

where η et ρ = λ/η are set to match the constraints.
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LMP Double sided Test, cont’nd

Form the test on the means of normal random variables (see preceding example),

f(x, θ) =

√
n√

2πσ
e
−n(x−θ)2

2σ2

then by subtitution

x2 − σ2/n

σ2/n− ρx
H1
≷
H0

η

and fixing ρ = 0, one gets

|x|
H1
≷
H0

σ
√
η + 1/

√
n = γσ/

√
n

which was previously obtained...
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LMP Double sided Test, cont’nd

These results generalize starightforwardly ;-) to the multiple unknown parameters
case :
unbiased test constraint :

‖ ∇E~θ[φ]
∣∣∣~θ0
‖= 0

Maximal concavity constraint :

tr∇2E~θ[φ]
∣∣∣~θ0

Max

Resulting test

tr∇2f(x, θ)
∣∣∣~θ0

f0(x) + ρ ‖ ∇f(x, θ)|~θ0

H1
≷
H0

η
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Neyman-Pearson MinMax test
IDEA : Maximize the power of the test for the least favorable distribution of the

unknown parameters
Find p∗0(θ) and p∗1(θ) in order to

Maximize
∫

Θ1

∫
X1

f1(x|θ)p∗1(θ)dθ

with the constraint on the level of the test∫
Θ0

∫
X1

f0(x|θ)p∗0(θ)dθ ≤ α

Problems
• if p∗0(θ) concentrates upon very unlikely (atypical) values, the test may be very
poor (low power).
• p∗0(θ) and p∗1(θ) may extremely difficult to find.
Classical example : detection of a sinusoidal signal with unknown phase ψ ; ψ ∈
[0,2π] is the least favorable dist.
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Generalized LRT

• “ad-hoc” detector
• “plug-in” receiver
• in general, no optimilaty is asserted

most commonly : the unknown parameters are replaced by their “maximum likeli-
hood” estimates

LGLR =
maxθ∈Θ1

p(x,θ)

pθ0(x)

H1
≷
H0

η

(notice that in our case H0 is a simple hypothesis, and no plug in estimate is necessary under

H0).
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GLRT asymptotics

— As the nb. of indep. obs. n → ∞, the ML estimate θ1MLE is a consistent
estimator of θ1, the GLRT is asymptotically UMP.

— The GLR statistic has a Chi-square limiting distribution : if pθ0
(x) is smooth

(under H0), it can be shown that for large n

2 logLGLR ∼ X2
p

p= nb. of components of the unknown parameter θ1, which are relevant in
for the test under consideration
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GLRT asymptotics : proof of convergence toward the X 2 law

(H0 is simple and θ0 is a scalar)
•Let θ̂n an ML estimate from a set x of n i.i.d. observations.

logL(x, θ0) = logL(x, θ̂n)

+(θ0 − θ̂n) ∂∂θ logL(x, θ̂n) + 1
2(θ0 − θ̂n)2 ∂2

∂θ2 logL(x, θ̂?)

where θ? ∈ [θ0, θ̂n].
• θ̂n is the ML estimate⇒ ∂

∂θ logL(x, θ̂n) = 0

•By the law of large numbers, noticing that MLE is consistent, for n→∞,

θ̂n → θ0
θ̂? → θ0
1
n

∑n
i=1

∂2

∂θ2 log f(xi, θ
?)→ Eθ0

[
∂2

∂θ2 log f0(x)
]

= −I0

where I0 is the Fisher information of the sample for estimating θ0.

58



GLRT asymptotics : proof of convergence, continued.
From estimation theory : √

nI0(θ̂n − θ0)→ N (0,1)

thus

nI0(θ̂n − θ0)2 → X2
1

and by inserting this in the previous expansion of the log-likelihood

2 logL(x, θ0)→ X2
1

if L is not a smooth function of θ0.... :-(
Approximate statistics with e.g. Gram Charlier or Edgeworth expansions
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This course : test H0 agains H1, in a single (or multiple, with not that many) hy-
pothesis framework

What happens for hundreds or thousands of possible instances, possibly depar-
ting from H0 ?

Next Lecture : multiple hypothesis testing and false discovery rate control
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