

Ecole BasMatl Bases mathématiques pour l'instrumentation et le traitement du signal en astronomie

Nice - Porquerolles, 1 - 5 Juin 2015

Representation of signals as series of orthogonal functions

Eric Aristidi Laboratoire Lagrange - UMR 7293 UNS/CNRS/OCA

1. Fourier Series

- 2. Legendre polynomials
- 3. Spherical harmonics
- 4. Bessel functions

Fourier Series

Théorie analytique de la chaleur, 1822

Solutions to the heat equation (diffusion PDE) as trigonometric series

Fourier Series

Approching a periodic signal by a sum of trigonometric functions

Partial Fourier series

Individual terms

Frequencies: $0, \pm 1/T$

Partial Fourier series

Individual terms

Frequencies: $0, \pm 1/T, \pm 2/T, \pm 3/T$

Partial Fourier series

Individual terms

Partial Fourier series

Individual terms

Partial Fourier series

Individual terms

Two representations of the signal

Ensemble of discrete sampled values $\{f(t_k)\}$

Ensemble of Fourier coefficients $\{c_n\}$

Fourier Series

Complex form : for a signal f(t) of period T

$$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{2i\pi \frac{nt}{T}}$$
 period T/n

Odd functions : sum of sines

Even functions : sum of cosines

$$c_n = c_{-n}$$

$$f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos\left(2\pi \frac{nt}{T}\right)$$

$$f(t) = \sum_{n=1}^{\infty} b_n \sin\left(2\pi \frac{nt}{T}\right)$$

$$a_n = c_n + c_{-n}$$

$$a_0 = c_0$$

$$b_n = i(c_n - c_{-n})$$

General case ; real form :
$$f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos\left(2\pi \frac{nt}{T}\right) + b_n \sin\left(2\pi \frac{nt}{T}\right)$$

Calculating the coefficients c_n

$$\begin{split} \phi_n(t) &= e^{2i\pi \frac{nt}{T}} \\ \text{weighting function} \\ \text{(Key » relation :} \quad \int_0^T \underbrace{\frac{1}{T}} \phi_n(t) \, \overline{\phi_m(t)} \, dt \ = \ \begin{vmatrix} 1 & \text{if } n = m \\ 0 & \text{if } n \neq m \end{vmatrix} \end{split}$$

Then:
$$c_n = \int_0^T \frac{1}{T} f(t) \overline{\phi_n(t)} dt$$

Fourier series and scalar product

Vectors (3D) $ec{u}=(u_1,u_2,u_3)$	$\vec{v} = (v_1, v_2, v_3)$	Functions $f(t), g(t)$	
Scalar product : (bilinear, for u and v)	$ec{u}.ec{v} = \sum_i u_i v_i$ 2 vectors 1 number	Scalar product : $(f,g) =$ (suited to Fourier series)	$\int_0^T \frac{1}{T} f(t) \overline{g(t)} dt$
Norm : (positive)	$ \vec{u} ^2 = \vec{u}.\vec{u}$	Norm : $(f, f) =$	$= \int_0^T \frac{1}{T} f(t) ^2 dt$
Orthogonality :	$\vec{u} \perp \vec{v} \iff \vec{u}.\vec{v} = 0$	f and g are orthogonal iif	(f,g) = 0
Orthonormal base : $(\hat{x}, \hat{y}, \hat{z})$ $\begin{bmatrix} \hat{x}.\hat{y} = 0\\ \hat{x}.\hat{x} = 1 \end{bmatrix}$		Orthonormal base : $(\phi_n, \phi_m) = \begin{bmatrix} 0\\ 1 \end{bmatrix}$	$\{\phi_n\}$ if $n \neq m$ if $n = m$
Decomposition : $ec{u} = u_1 \hat{x} + u_2 \hat{y} + u_3 \hat{z}$		Decomposition : $f(t) = \sum_{n} c_n \phi_n(t)$	= Fourier series
with $u_1 = \vec{u} \cdot \hat{x}$		$c_n = (f, \phi_n)$	

Fourier series and Differential Equations

(trigonometric series were introduced from Fourier work on PDE heat equation)

 $f'' + \omega_n^2 f = 0$ Harmonic oscillator equation with $\omega_n = \frac{2\pi n}{T}$

2 independent solutions are $\phi_n(t) = e^{2i\pi \frac{nt}{T}}$

and
$$\phi_{-n}(t) = e^{-2i\pi \frac{nt}{T}}$$

Any solution is the superposition

$$f(t) = k_1 \phi_n(t) + k_2 \phi_{-n}(t)$$

Fourier base functions are associated with harmonic differential equation

$$f(t) = k_1 \phi_n(t) + k_2 \phi_{-n}(t)$$

Essential ideas on Fourier Series

- Periodic signal
- Can be expressed as a series of trigonometric base functions (exp, cos, sin)
- Base functions are orthonormal, with respect to an appropriate scalar product
- Coefs. of the series calculated as a scalar product between the signal and each base function

Base functions are solutions of a differential Eq.

Ecole BasMatl Bases mathématiques pour l'instrumentation et le traitement du signal en astronomie

Nice - Porquerolles, 1 - 5 Juin 2015

Representation of signals as series of orthogonal functions

Eric Aristidi Laboratoire Lagrange - UMR 7293 UNS/CNRS/OCA

- 1. Fourier Series
- 2. Legendre polynomials
- 3. Spherical harmonics
- 4. Bessel functions

Legendre Polynomials

Introduced by A.M. Legendre, 1784, « Recherches sur la figure des

planètes », mém. de l'académie royale des sciences de Paris

J. Bark Bark

Gravitational potential at \hat{R}

$$\Phi(\vec{R}) = \frac{GM}{|\vec{R} - \vec{r'}|}$$

with :

$$|\vec{R} - \vec{r}'| = R\sqrt{1 - 2\frac{r'}{R}\cos\theta + \left(\frac{r'}{R}\right)^2}$$

Introducing
$$r = \frac{r'}{R}$$
 and $x = \cos \theta$
 $\Phi(\vec{R}) \propto [1 - 2rx + r^2]^{-\frac{1}{2}}$

Generating function of Legendre Polynomials

Taylor expansion at
$$r=0$$
: $[1 - 2rx + r^2]^{-\frac{1}{2}} = \sum_{n=0}^{\infty} r^n P_n(x)$ with $-1 \le x \le 1$

Legendre Polynomials

n distinct roots in the interval [1-,1] 17/66

Fourier-Legendre series

Scalar product :

$$(f,g) = \int_{-1}^{1} f(x) g(x) \, dx$$

(suited to Legendre polynomials)

Orthogonality :

$$(P_n, P_m) = \int_{-1}^{1} P_n(x) P_m(x) dx = \frac{1}{n + \frac{1}{2}} \delta_{mn} = \begin{vmatrix} 0 & \text{if } n \neq m \\ \frac{1}{n + \frac{1}{2}} & \text{if } n = m \end{vmatrix}$$
Not orthonormal !

Fourier-Legendre series (for a function f(x) square-summable on [-1,1]):

$$f(x) = \sum_{n=0}^{\infty} c_n P_n(x)$$

Coefficient determination :
$$c_n = \left(n + \frac{1}{2}\right) (f, P_n) = \left(n + \frac{1}{2}\right) \int_{-1}^{1} f(x) P_n(x) dx$$

Example of Fourier-Legendre reconstruction

 $(c_1=0 \text{ for an even signal})$

Partial Fourier-Legendre series

Partial Fourier-Legendre series

Partial Fourier-Legendre series

Fourier-Legendre coefficients

For an even signal : all odd c_n vanish

In this example, 8 coefficients seem enough to reconstruct the signal

Error on the reconstruction : Euclidean distance

$$\epsilon = \int_{-1}^{1} \left[f(x) - \sum_{n=0}^{N_{max}} c_n P_n(x) \right]^2 dx$$

Another example : f(x) = tan(x)

The signal is periodized (period 2)

Advantage to Fourier-Legendre (for this case)

Example in physics : gravitational potential of a uniform bar

This is a Fourier-Legendre expansion of the potential (a.k.a. multipolar expansion)

Fourier-Legendre series of the potential

r=0.75 *L*

Polar plot

Potential (partial sums)

Polar plot

Essential ideas on Fourier-Legendre Series

Signal defined on interval [-1,1]

- Can be expressed as a series of Legendre polynomials (base functions)
- Legendre polynomials are defined by Taylor expansion of a *characteristic function*
- Legendre poly's are orthogonal, with respect to an appropriate scalar product
- Coefs. of the series calculated as a scalar product between the signal and each polynom
- Polynoms are solutions of Legendre differential Eq. $\frac{d}{dx} \left[(1-x^2) \frac{d}{dx} P_n(x) \right] + n(n+1) P_n(x) = 0.$

Ecole BasMatl Bases mathématiques pour l'instrumentation et le traitement du signal en astronomie

Nice - Porquerolles, 1 - 5 Juin 2015

Representation of signals as series of orthogonal functions

- 1. Fourier Series
- 2. Legendre polynomials
- 3. Spherical harmonics
- 4. Bessel functions

Towards the Spherical Harmonics : associated Legendre functions : P_1^m

Definition:

$$P_l^m(x) = (-1)^m (1 - x^2)^{\frac{m}{2}} \frac{\mathrm{d}^m}{\mathrm{d}x^m} P_l(x) \quad \text{(for } m > 0\text{)}$$

$$-l \le m \le l \qquad P_l^{-m} = (-1)^m \frac{(l-m)}{(l+m)!} P_l^m$$

if m=0: $P_l^0 = P_l \longrightarrow$ generalisation of Legendre polynomials

Orthogonality (same scalar product as P_n)

Fixed m, different l:

Fixed l, different m:

$$(P_l^m, P_{l'}^m) = \frac{2(l+m)!}{(2l+1)! (l-m)!} \,\delta_{ll'} \qquad (P_l^m, P_l^{m'}) = \frac{(l+m)!}{m (l-m)!} \,\delta_{mm'}$$

l=0:1 polynom

l=2 : 5 "polynoms"

l=1:3 "polynoms"

For a given l there are 2l+1 possible P_m^l

Spherical Harmonics

Back to the Newtonial potential :

If azimuthal symmetry, the potential is a function of r and θ and can be developped as a Fourier-Legendre series :

$$\Phi(r,\theta) = \sum_{l=0}^{\infty} c_l(r) P_l(\cos\theta)$$
function of r glone function of θ glone

What if no azimuthal symmetry ?

The potential depends on the 3 spherical coordinates (r,θ,ϕ) . Laplace (1785) showed that a similar series expansion can be made :

$$\Phi(r,\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} C_{lm}(r) Y_l^m(\theta,\phi)$$

Spherical Harmonics

To find the functions $C_{lm}(r)$ and $Y_l^m(\theta,\phi)$, say that the potential obey Laplace's equation

$$\Delta \Phi = 0$$
 (Solutions are
« harmonic functions »)

$$Y_l^m(\theta,\phi) = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{im\phi} \qquad \frac{\mathrm{Sp}}{\mathrm{Ho}}$$

Spherical Harmonics

l: degree, m: order; $-l \le m \le l$

The potential at the surface of a sphere (fixed r) is a 2D function $f(\theta, \phi)$ which can be developped as a series of spherical harmonics :

$$\Phi(r,\theta,\phi) = f(\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{lm} Y_l^m(\theta,\phi)$$

Orthogonality and series expansion

Scalar product : (suited to Spherical harmonics) $(f,g) = \int_{\theta=0}^{\pi} \int_{\phi=0}^{2\pi} f(\theta,\phi) \,\overline{g(\theta,\phi)} \,\sin\theta \,d\theta \,d\phi$

$$(Y_l^m, Y_{l'}^{m'}) = \delta_{mm'} \delta_{ll'}$$

orthonormal base

Series expansion for a function $f(\theta, \phi)$ on a sphere :

$$f(\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{lm} Y_l^m(\theta,\phi)$$

Coefficient determination: $a_{lm} = (f, Y_l^m) = \int_0^{\pi} \int_0^{2\pi} f(\theta, \phi) \overline{Y_l^m(\theta, \phi)} \sin \theta \, d\theta \, d\phi$

Orthogonality:

Comparison: 1D (polar) and 2D (spherical)

In the plane : polar coordinates (r, ϕ)

Function $f(\phi)$ with values on a circle $r=C^{te}$

 2π periodic in ϕ

Fourier expansion

$$f(\phi) = \sum_{n=-\infty}^{\infty} c_n e^{in\phi}$$

In space : spherical coordinates (r, θ, ϕ)

Function $f(\theta, \phi)$ with values on a sphere $r=C^{te}$

 2π periodic in ϕ and θ

Spherical harmonic expansion

$$f(\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{lm} Y_l^m(\theta,\phi)$$

First spherical harmonic

$$Y_0^0(\theta,\varphi) = \frac{1}{2}\sqrt{\frac{1}{\pi}}$$
 (uniform

1=1

m=-1

m=0

Different representation

for positive m, use : $Y_l^{-m}(\theta,\phi) = (-1)^m \overline{Y_l^m(\theta,\phi)}$

Symmetries of the spherical harmonics

m=0: azimuthal symmetry

$$Y_l^0(heta,\phi) = \sqrt{rac{2l+1}{4\pi}} P_l(\cos\theta)$$

Spherical harmonic expansion becomes a Fourier-Legendre series of $cos(\theta)$

Parity in $cos(\theta)$:

l+m even : symmetry plane z=0

Adapted for series expansion of functions having a symmetry plane

l+m odd: anti-symmetry plane z=0

Adapted for series expansion of functions having a anti-symmetry plane

Harmonic Y_l^m : $m \text{ periods in direction } \phi (\text{term } e^{im\phi})$ $n - m \text{ node lines } (Y_l^m = 0) \text{ in direction } \theta$ Large m or (l-m)= small details

Application to wide-field imagery : WMAP images

Figure 32: The CMB radiation temperature fluctuations from the 5-year WMAP data

Decomposition of the CMB signal on the Y_m^l Plot of coefficients $|c_1|^2$ (averaged over *m*), i.e. « angular power spectrum »

Source : B. Terzic, http://www.nicadd.niu.edu/~bterzic/

Application to wide-field imagery : WMAP images

Cumulative image of the WMAP sky as incresing I numbers are summed

(For each I, all orders m are accumulated)

find.spa.umn.edu/~pryke/logbook/20000922/

Application to wide-field imagery : WMAP images

Cumulative image of the WMAP sky as incresing I numbers are summed

(For each I, all orders m are accumulated)

find.spa.umn.edu/~pryke/logbook/20000922/

Essential ideas on Spherical Harmonic expansion

- Signal depending on of 2 angular spherical coord. (θ, ϕ)
- Can be expressed as a series of spherical Harmonics Y_m^l (base functions)
- Y_m^l are orthonormal, with respect to an appropriate scalar product
- Coefs. of the series calculated as a scalar product between the signal and each Y_m^l

• Y_m^l are connected to Laplace differential Eq. in spherical coordinates

Ecole BasMatl Bases mathématiques pour l'instrumentation et le traitement du signal en astronomie

Nice - Porquerolles, 1 - 5 Juin 2015

Representation of signals as series of orthogonal functions

- 1. Fourier Series
- 2. Legendre polynomials
- 3. Spherical harmonics
- 4. Bessel functions

Bessel, 1824 memoir

« Untersuchung des Theils der planetarischen Störungen, welcher aus der Bewegung der Sonne entsteht »

« Examination of that part of the planetary disturbances , which arises from the movement of the sun »

Fourier series of the planet position r(t):

$$\frac{r}{a} = 1 + \frac{\epsilon^2}{2} + \sum_{n=1}^{\infty} B_n \cos\left(2\pi \frac{nt}{T}\right)$$

«Bessel coefficient»:

$$B_n = -\frac{\epsilon}{n\pi} \int_0^{2\pi} \sin u \, \sin(nu - n\epsilon \sin u) \, du$$

T: orbital period

Bessel functions

Bessel's differential equation :

$$x^2 y'' + x y' + (x^2 - n^2) y = 0$$
 (*n* is a constant)
we consider *n* integer here

Bessel Functions of the 1st kind $J_n(x)$

Regular for $x \rightarrow 0$:

$$J_n(0)=0$$
 for $n>0$; $J_0(0)=1$
 $J_n(x) \simeq \frac{1}{n!} \left(\frac{x}{2}\right)^n$

Limit for $x \rightarrow \infty$:

$$J_n(x) \simeq \sqrt{\frac{\pi}{2x}} \cos\left(x - \frac{n\pi}{2} - \frac{\pi}{4}\right)$$

~ damped sinudoid

Bessel Functions of the 2nd kind $Y_n(x)$

Diverge at $x \rightarrow 0$:

$$Y_n(x) \simeq -\frac{(n-1)!}{\pi} \left(\frac{2}{x}\right)^n$$
$$Y_0(x) \simeq \frac{2}{\pi} \ln\left(\frac{x}{2}\right)$$

Limit for $x \rightarrow \infty$:

$$Y_n(x) \simeq \sqrt{\frac{\pi}{2x}} \sin\left(x - \frac{n\pi}{2} - \frac{\pi}{4}\right)$$

damped sinudoid, phase-shifted with J_n

Bessel Functions of the 1st kind $J_n(x)$

(with *n* integer)

Series representation $(n \ge 0)$:

$$J_n(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!(m+n)!} \left(\frac{x}{2}\right)^{2m+n}$$

$$J_{-n} = (-1)^n J_n$$

Parity: n

 J_n are the Fourier coefficients of the development :

$$e^{ix\sin\phi} = \sum_{n=-\infty}^{\infty} J_n(x) e^{in\phi}$$

« sort of » generating function as defined for legendre polynomials :

$$[1 - 2rx + r^2]^{-\frac{1}{2}} = \sum_{n=0}^{\infty} r^n P_n(x)$$

with

$$J_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ix \sin \phi} e^{-in\phi} d\phi$$

Integral representation for $J_n(x)$

Compare with Bessel coefficient $B_n = -\frac{\epsilon}{n\pi} \int_0^{2\pi} \sin u \, \sin(nu - n\epsilon \sin u) \, du$

Bessel functions in physics

1 dimension : harmonic oscillator

Differential equation :

$$f'' + \omega^2 f = 0$$

f(t) : spring extension

Base solutions :

 $e^{\pm i\omega t}$

2 dimensions : membrane of a drum

 $\Delta f + k^2 f = 0$

 $f(\rho,\phi)$: membrane elevation

(temporal dependence in $e^{-i\omega t}$)

Base solutions :

$$f_{nm}(\rho,\phi) = J_n(k_m\rho) e^{in\phi}$$
 «mode»

 (ρ,ϕ) : polar coordinates (m,n): integers

General solution : linear combination of modes $f_{mn}(\rho, \phi)$

Bessel function generally appear in polar (2D) or cylindrical (3D) coordinates

Series expansions involving Bessel functions :

Neumann series

$$f(x) = \sum_{n=0}^{\infty} a_n J_n(x)$$

(can be generalized to real indexes J_{ν})

Convenient for expansions on $[-\infty, +\infty]$

A reference book about Bessel functions (800 pages)

Fourier-Bessel series

55/66

$$f(x) = \sum_{n=1}^{\infty} c_n J_p(\alpha_{np} x)$$

 α_{np} is the n^{th} positive root of J_p

Convenient for expansions on [0,1] with boundary condition at x=1

Neumann series

Drum modes and Fourier-Bessel series

$$f_{mn}(\rho,\phi) = J_n(k\rho) e^{im\phi}$$

Must satisfy $f_{mn}(R) = 0$ ϕ (boundary condition) : $\Rightarrow kR$ is a root of J_n

General solution is :

R : radius of the drum

 α_{nm} is the m^{th} root of J_n

$$f(\rho, \phi) = \sum_{n=-\infty}^{\infty} \sum_{m=1}^{\infty} A_{nm} J_n \left(\alpha_{nm} \frac{r}{R} \right) e^{in\phi}$$

Fourier-Bessel expansion
for $x=r/R$
Fourier series for ϕ

Single term (n, m): «mode»

Drum vibration modes

58006e Wikipedia

Orthogonality and Fourier-Bessel expansion

Scalar product :
$$(f,g) = \int_0^1 x f(x) g(x) dx$$

Orthogonality :

$$(J_n(\alpha_m x) J_n(\alpha_p x)) = \int_0^1 x J_n(\alpha_m x) J_n(\alpha_p x) dx = \frac{J_{n+1}^2(\alpha_m)}{2} \delta_{mp}$$

Fourier-Bessel series (in the interval [0,1]) :

$$f(x) = \sum_{m=1}^{\infty} c_m J_n(\alpha_m x)$$

Coefficient determination :

$$c_m = \frac{2}{J_{n+1}^2(\alpha_m)} \int_0^1 x f(x) J_n(\alpha_m x) dx$$

Example of Fourier-Bessel reconstruction

Expansion on J_0 's : $\sum_{m=1}^{N_{max}} c_m J_0(\alpha_m x)$

Expansion on J_0 's : $\sum_{m=1}^{N_{max}} c_m J_0(\alpha_m x)$

Expansion on J_0 's : $\sum_{m=1}^{N_{max}} c_m J_0(\alpha_m x)$

Essential ideas :

Signal or function defined on an interval

 Can be expressed as a sum of orthogonal base functions

 Need for a scalar product (depends on the base functions)

 Base functions defined by a differential Eq. or a characteristic function

 Choice of the base : free or induced by the physics