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Fourier Series

Théorie analytique de la chaleur, 1822 

Solutions to the heat equation (diffusion PDE) as trigonometric series
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For a signal with period T 

-Nmax

Nmax

frequency n/T

Approching a periodic signal by a sum of trigonometric functions

Fourier Series
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Partial Fourier series Individual terms

Frequencies :   0 , ±1/T

n=1
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Partial Fourier series Individual terms

Frequencies : 0 , ±1/T , ±2/T, ±3/T

n=1

n=3

n=2
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Partial Fourier series Individual terms
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Partial Fourier series Individual terms
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Partial Fourier series Individual terms
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Two representations of the signal

Ensemble of discrete sampled values {f(tk)} Ensemble of Fourier coefficients {cn}
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Fourier Series

Complex form :
for a signal f(t) of period T 

Even functions : sum of cosines Odd functions : sum of sines

General case ; real form : 

period T/n
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uniform convergence

Calculating the coefficients cn

weighting
function

« Key » relation :

nul if p≠n

Then :

Calculate the integral
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Fourier series and scalar product

Vectors (3D) Functions

Orthogonality :

Orthonormal base :

Decomposition :

with

(bilinear, for u and v)

Scalar product :

2 vectors... 1 number

Norm :
(positive)

f and g are orthogonal iif

Orthonormal base :

Decomposition :
= Fourier series

Scalar product :

Norm :

(suited to Fourier series)
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Fourier series and Differential Equations

Harmonic oscillator equation

2 independent solutions are 

and

with

Any solution is the superposition

Fourier base functions are associated with harmonic differential equation

(trigonometric series were introduced from Fourier work on PDE heat equation)
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Essential ideas on Fourier Series

Periodic signal

Can be expressed as a series of
trigonometric base functions (exp, cos, sin)

Base functions are orthonormal, with respect to an 
appropriate scalar product

Coefs. of the series calculated as a scalar product
between the signal and each base function

Base functions are solutions of a differential Eq.
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Legendre Polynomials

Introduced by A.M. Legendre, 1784, « Recherches sur la figure des 
planètes », mém. de l’académie royale des sciences de Paris

x
y

z
R

r’θ

Gravitational potential atR

mass M with :

Introducing and

Generating function of Legendre Polynomials

O
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Taylor expansion at r=0 : with

Degree : n

Recurrence relation :

Parity : n

n distinct roots in the interval [1-,1]
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Fourier-Legendre series

Scalar product :

Orthogonality :

Not orthonormal !

Coefficient determination :

Fourier-Legendre series (for a function f(x) square-summable on [-1,1]) :

(suited to Legendre polynomials)
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Partial Fourier-Legendre series Individual term

Signal :

a=0.3

c0 P0(x)

Example of Fourier-Legendre reconstruction
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Partial Fourier-Legendre series Individual terms

c0 P0(x) and c2 P2(x) 

(c1=0 for an even signal)
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Partial Fourier-Legendre series Individual terms

c0 P0(x)

c4 P4(x)

c2 P2(x)
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Partial Fourier-Legendre series Individual terms

c0 P0(x)

c4 P4(x)

c2 P2(x)

c6 P6(x)



23/66

Partial Fourier-Legendre series Individual terms

c0 P0(x)

c4 P4(x)

c2 P2(x)

c6 P6(x)

c8 P8(x)
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For an even signal : all odd cn vanish

In this example, 8 coefficients seem enough to reconstruct the signal
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Error on the reconstruction :
Euclidean distance
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Another example : f(x)=tan(x)

Comparison with Fourier series

-1 1

The signal is periodized (period 2)

x

Advantage to Fourier-Legendre (for this case)

signal

Nmax=1

Nmax=3
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Example in physics : gravitational potential of a uniform bar

● P

θ

r
L/2

r’

Gravitational
potential :

λ=linear mass density

Using the generating function of Legendre polynomials: 

One finds easily :

with-L/2

This is a Fourier-Legendre expansion of the potential
(a.k.a. multipolar expansion)
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Fourier-Legendre series of the potential r=0.75 L
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Polar plotIndividual terms Potential (partial sums) Polar plot

c0 P0(cos θ)

c2 P2(cos θ)

c4 P4(cos θ)
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Essential ideas on Fourier-Legendre Series

Signal defined on interval [-1,1]

Can be expressed as a series of
Legendre polynomials (base functions)

Legendre poly's are orthogonal, with respect to an 
appropriate scalar product

Coefs. of the series calculated as a scalar product
between the signal and each polynom

Polynoms are solutions of Legendre differential Eq.

Legendre polynomials are defined by Taylor 
expansion of a characteristic function
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Towards the Spherical Harmonics : 
associated Legendre functions : Pl

m

Definition :

Orthogonality (same scalar product as Pn)

→ generalisation of Legendre polynomialsif m=0 : 

Fixed m, different l : Fixed l, different m :

(for m>0)
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l=2 : 5 "polynoms"

l=1 : 3 "polynoms"l=0 : 1 polynom

For a given l
there are 2l+1
possible Pl

m
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Spherical Harmonics

Back to the Newtonial potential :

If azimuthal symmetry, the potential is a 
function of r and θ and can be
developped as a Fourier-Legendre
series :

What if no azimuthal symmetry ?
The potential depends on the 3 
spherical coordinates (r,θ,φ). Laplace 
(1785) showed that a similar series
expansion can be made :

● P

θ r
r’

function of r alone function of θ alone
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Spherical Harmonics

To find the functions Clm(r) and Yl
m(θ,φ),

say that the potential obey Laplace’s equation
(Solutions are  
« harmonic functions »)

and find : Spherical
Harmonics

The potential at the surface of a sphere (fixed r) is a 2D function f(θ, φ) which can
be developped as a series of spherical harmonics :

l : degree,   m : order ;   -l ≤ m ≤ l
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Orthogonality and series expansion

Scalar product :

Orthogonality :

orthonormal base

Series expansion for a function f(θ,φ) on a sphere :

Coefficient determination :

(suited to Spherical harmonics)
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Comparison : 1D (polar) and 2D (spherical)

φ
x

y

Function f(φ) with values on a circle r=Cte

2π periodic in φ

Fourier expansion

Function f(θ,φ) with values on a sphere r=Cte

2π periodic in φ and θ

Spherical harmonic expansion

In the plane : polar coordinates (r,φ) In space : spherical coordinates (r,θ,φ)
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First spherical harmonic (uniform)

z
z

z

x

y



39/66

l=1

m=-1 m=0 m=1

indep. of φ : azimuthal symmetry
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Different representation

l=1, m=0

l=1, m=1
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l=2
m=-2 m=-1 m=0

for positive m, use :
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Symmetries of the spherical harmonics

m=0 : azimuthal symmetry

Parity in cos(θ) :

l+m even : symmetry plane z=0 l+m odd: anti-symmetry plane z=0

Spherical harmonic expansion becomes a Fourier-Legendre series of cos(θ)

Adapted for series expansion of functions
having a symmetry plane

Adapted for series expansion of functions
having a anti-symmetry plane
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Harmonic Yl
m : m periods in direction φ (term eimφ)

n - m node lines (Yl
m=0)  in direction θ

Large m or (l-m)
= small details
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Application to wide-field imagery : WMAP images

φ

θ

Source : B. Terzic,
http://www.nicadd.niu.edu/~bterzic/

Decomposition of the CMB signal on the Yl
m

Plot of coefficients |cl |2 (averaged over m), 
i.e. « angular power spectrum »
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find.spa.umn.edu/~pryke/logbook/20000922/

Cumulative image of the WMAP sky as incresing l numbers are summed

(For each l, all orders m are accumulated)

Application to wide-field imagery : WMAP images
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find.spa.umn.edu/~pryke/logbook/20000922/

Cumulative image of the WMAP sky as incresing l numbers are summed

(For each l, all orders m are accumulated)

Application to wide-field imagery : WMAP images
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Essential ideas on Spherical Harmonic expansion

Signal depending on of 2 angular
spherical coord. (θ,φ)

Can be expressed as a series of
spherical Harmonics Yl

m (base functions)

Yl
m are orthonormal, with respect to an 

appropriate scalar product

Coefs. of the series calculated as a scalar product
between the signal and each Yl

m

Yl
m are connected to Laplace differential Eq.

in spherical coordinates
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Bessel, 1824 memoir

« Untersuchung des Theils der planetarischen Störungen, 
welcher aus der Bewegung der Sonne entsteht »

« Examination of that part of the planetary disturbances ,
which arises from the movement of the sun »

Fourier series of the planet position r(t) :

«Bessel coefficient » : 

Mettre ellipse

☼

r(t)

2a

●

ε : excentricity
T : orbital period

Sun Planet
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Bessel’s differential equation :

(n is a constant)
we consider n integer here

Two base solutions : Jn(x) and Yn(x)

1st kind 2nd kind

Bessel functions
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Bessel Functions of the 1st kind Jn(x)

Jn(0)=0   for n>0 ; J0(0)=1

Regular for x ➝ 0 : Limit for x ➝ ∞ :

Infinite
number of
roots

~ damped sinudoid
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Bessel Functions of the 2nd kind Yn(x)

Diverge at x ➝ 0 :

damped sinudoid, phase-shifted with Jn

Limit for x ➝ ∞ :
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(with n integer)

with

Integral representation for Jn(x)

Jn are the Fourier coefficients of the development :

« sort of » generating function as 
defined for legendre polynomials :

Series representation (n>0) :

Parity : n

Bessel Functions of the 1st kind Jn(x)

Compare with Bessel coefficient

☼ ●
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Bessel functions in physics

1 dimension : harmonic oscillator 2 dimensions : membrane of a drum

(ρ,φ) : polar coordinates
(m,n) : integers

Differential equation :

Base solutions : Base solutions :

General solution : 
linear combination of modes fmn(ρ,φ) 

« mode »

Bessel function generally appear in polar (2D) or cylindrical (3D) coordinates

f(t) : spring extension

f(ρ,φ) : membrane elevation

(temporal 
dependence in e-iωt)
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Series expansions involving Bessel functions :

Neumann series

Fourier-Bessel series

(can be generalized to real indexes Jν)

A reference book about 
Bessel functions (800 pages)

αnp is the nth positive root of Jp

Convenient for expansions on [-∞,+∞]

Convenient for expansions on [0,1] 
with boundary condition at x=1
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Neumann series

Example : Fourier series for φ (x=Cte)

Neumann series for x (φ=Cte)

If φ=0
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Drum modes and Fourier-Bessel series

R

R : radius of the drum

Base solutions :

Must satisfy fmn(R)=0 �φ (boundary condition) :

kR is a root of Jn

General solution is : 

Fourier-Bessel expansion
for  x=r/R

Fourier series for φ

αnm is the mth root of Jn

Single term (n, m) :  «mode»
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Drum vibration modes

n=0 (isotrope)

m=1 m=2 m=31st zero
of J0

A01 J0(α01 r/R) A02 J0(α02 r/R) A03 J0(α03 r/R)

2nd zero
of J0

3rd zero
of J0

Source Wikipedia

n=1
(real part)

A11 J1(α11 r/R) cos φ A12 J1(α12 r/R) cos φ A13 J1(α13 r/R) cos φ

m=1 m=2 m=31st zero
of J1

n=2
(real part)

m=1 m=2 m=3

A21 J2(α21 r/R) cos 2φ A22 J2(α22 r/R) cos 2φ A23 J2(α23 r/R) cos 2φ

1st zero
of J2
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Orthogonality and Fourier-Bessel expansion

Scalar product :

Orthogonality :

Fourier-Bessel series (in the interval [0,1]) :

Coefficient determination :

1
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First term m=1Signal :

c1 J0(α1 x)

Example of Fourier-Bessel reconstruction

α1=2.4048

(null at x=1)

Expansion on J0’s : c1=-0.027
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Individual terms m=1,2

α1=2.4048
c1=-0.027

α2=5.5201
c2=0.389

m=2

m=1

Signal :

Expansion on J0’s :
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Individual terms m=1,2,3

m=2

m=1

m=3

Signal :

Expansion on J0’s :
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m=2

m=1

m=3

m=4

Individual terms m=1,2,3,4Signal :

Expansion on J0’s :
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Individual terms m=1 to 20Signal :

Expansion on J0’s :
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Error is dominated
by low x values

Results of the
reconstruction
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Essential ideas :

Signal or function defined on an interval

Can be expressed as a sum of
orthogonal base functions

Need for a scalar product
(depends on the base functions)

Base functions defined by a differential Eq.
or a characteristic function

Choice of the base : 
free or induced by the physics


