An Introduction on Multiple Testing: False Discovery Control

Florent Chatelain

Gipsa-Lab / DIS, Grenoble INP

BasMatI, Porquerolles, 2015

Multiplicity problem and chance correlation

Lottery

- Winning probability for a given ticket is very low...
- But among the huge number of tickets, the probability that there is at least one winning ticket is quite high !

Paul the octopus

- Paul predicts eight of the 2010 FIFA World Cup matches with a perfect score!
- Does it really means that Paul is an Oracle?
- I Large-scale experiments : multiplying the comparisons dramatically increases the probability to obtain a good match by pure chance

Multiplicity problem for statistical testing

- \blacktriangleright T is the test statistics,
- ▶ \mathcal{R}_{α} is the region of rejection at level α : if H_0 is true, $\Pr(T \in \mathcal{R}_{\alpha}) = \alpha$

Multiple testing issue

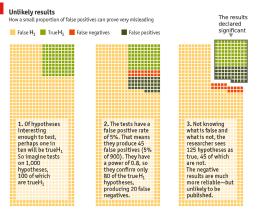
- ▶ N independent statistics T_1, \ldots, T_N obtained under the null H_0
- \blacktriangleright Probability to reject at least one of the N null hypotheses :

$$\Pr\left(\exists T_i \in \mathcal{R}_\alpha\right) = 1 - \Pr\left(T_1, \dots, T_N \notin \mathcal{R}_\alpha\right) = 1 - \prod_{i=1}^N \Pr\left(T_i \notin \mathcal{R}_\alpha\right),$$
$$= 1 - \prod_{i=1}^N (1 - \alpha) = 1 - (1 - \alpha)^N$$

- ▶ for a usual significative level $\alpha = 0.05$, performing N = 20 tests gives a probability 0.64 to find a 'significative' discovery by pure chance...
- ${\tt IS} \, \Pr \left({\rm ~at~ least~ one~ false~ positive~} \right) \gg \Pr \left({\rm ~the~} i{\rm -th~ is~ a~ false~ positive~} \right)$

Multiplicity problem in science

The Economist, 2013, "Unreliable research"



Many published research findings in top-ranked journals are not, or poorly, reproducible [Ioannidis, 2005]

Source: The Economist

▶ if the test power is only 0.4, 40 true positives in average for 45 false positives. Is this significant?

Large-Scale Hypothesis Testing [Efron, 2010]

Era of Massive Data Production

- ▶ "omics" revolution, e.g. microarrays measures expression levels of tens of thousands of genes for hundreds of subjects
- ▶ astrophysics, e.g. MUSE spectro-imager delivers cubes of 300×300 images for 3600 wavelengths : detecting faint sources leads to $N \approx 3 \times 10^8$ tests in a pixelwise approach

Large-Scale methodology

- statistical inference and hypothesis testing theory devolopped in the early 20th century (Pearson, Fisher, Neyman, ...) for small-data sets collected by individual scientist
- \mathbb{I} corrections are needed to assess significancy in large-scale experiments

Outline

Multiple testing error control

Basic statistical hypothesis testing concepts Family-Wise Error Rate FWER False Discovery Rate FDR

FDR control : Benjamini-Hochberg Procedure

BH Procedure Bayesian interpration of FDR Empirical Bayes interpretation of BH procedure

Variations on FDR control and BH Procedure

Improving power Dependence Learning the null distribution Multiple Testing and FDR Multiple testing error control Basic statistical hypothesis testing concepts

Type I and Type II Errors

For an individual statistical hypothesis testing

		Decision		
		H_0 retained H_0 rejected		
Actual	H_0 true	True Negative (TN) $1 - \alpha$	False Positive (FP) Type I Error α	
	H_0 false	False Negative (FN) Type II Error β	True Positive (TP) $1 - \beta$	

- ▶ False Positive \leftarrow false alarm,
- ▶ False Negative \leftarrow miss-detection,
- $\alpha = \Pr(\text{Type I Error}) \leftarrow significance level,$
- $\beta = \Pr(\text{Type II Error})$
- power $\pi = \Pr(\text{True Positive}) = 1 \beta$

Multiple Testing and FDR Multiple testing error control Basic statistical hypothesis testing concepts

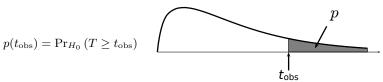
P-values : an universal language for hypothesis testing

Intuitive definition

 $p\text{-value} \equiv$ probability of obtaining a result as extreme or "more extreme" than the observed statistics, under H_0

One-sided test example

- ▶ T is the test statistic, t_{obs} an observed realization of T
- H_0 rejected when t_{obs} is too large : $\mathcal{R}_{\alpha} = \{t : t \ge \eta_{\alpha}\}$



Mathematical definition

Smallest value of α such that $t_{obs} \in \mathcal{R}_{\alpha}$

$$p(t_{\rm obs}) = \inf_{\alpha} \left\{ t_{\rm obs} \in \mathcal{R}_{\alpha} \right\}$$

Property of *p*-values

- Note that $p(t_{obs}) \leq u \Leftrightarrow t_{obs} \in \mathcal{R}_u$, for all $u \in [0, 1]$
- Let P = p(T) be the random variable. If H_0 is true

$$\Pr_{H_0}(P \le u) = \Pr_{H_0}(T \in \mathcal{R}_u) = u,$$

□ p-value \equiv transformation of the test statistics to be uniformly distributed under the null (whatever the distribution of *T*)

Statistical hypothesis test based on p-value

- H_0 : p-value has a uniform distribution on [0,1]: $P \sim \mathcal{U}([0,1])$
- H_1 : p-value is stochastically lower than $\mathcal{U}([0,1])$: $\operatorname{Pr}_{H_1}(P \leq u) = \operatorname{Pr}_{H_1}(T \in \mathcal{R}_u) > u,$
 - the smaller is $p \equiv p(t_{obs})$, the more decisevely is H_0 rejected
 - so for a given α , H_0 is rejected at level α if $p \leq \alpha$

Counting the errors in multiple testing

 $\blacktriangleright~N$ hypothesis tests with a common procedure

	Decision			
		H_0 retained	H_0 rejected	Total
Actual	H_0 true	V	U	N_0
	H_0 false	S	T	N_1
	Total	N-R	R	N

▶ $N_0 = \#$ true nulls, $N_1 = \#$ true alternatives

- ▶ U = # False Positives ← Type I Errors
- ▶ T = # True Positives,
- ▶ R = # Rejections

How to define, and control, a global Type I Error rate/criterion?

Family-Wise Error Rate FWER

Multiple testing settings for N tests

- $H_0^1, H_0^2, \ldots, H_0^N \equiv \text{family of null hypotheses}$
- $p_1, p_2, \ldots, p_N \equiv \text{corresponding p-values}$

Definition

▶ The familywise error rate is

$$FWER \equiv \Pr\left(\text{Reject at least one true } H_0^i\right) = \Pr\left(U > 0\right)$$

▶ A FWER control procedure inputs a family of p-values p_1, p_2, \ldots, p_N and outputs the list of rejected null hypotheses with the constraint

$$FWER \le \alpha$$

for any preselected α

Bonferroni's correction and FWER control

Bonferroni's correction Reject the null hypotheses H_0^i for which $p_i \leq \frac{\alpha}{N}$, (N is the number of tests)

FWER control

Let I_0 be the indexes of the true null hypotheses, and $N_0 = \#I_0$

FWER =
$$\Pr\left(\bigcup_{i \in I_0} p_i \le \frac{\alpha}{N}\right) \le \sum_{i \in I_0} \Pr\left(p_i \le \frac{\alpha}{N}\right),\$$

= $N_0 \frac{\alpha}{N} \le \alpha,$

where the first inequality is the Boole's inequality $\Pr(\bigcup_i A_i) \leq \sum_i \Pr(A_i)$.

- ▶ Bonferroni's does not require that the tests be independent (the p_i can be dependent)
- ▶ Šidák correction 'improves' Bonferroni for independent tests by rejecting the H_0^i for which $p_i \leq 1 (1 \alpha)^{1/N} \leftarrow$ equivalent for small α/N to Bonferroni : no real improvement.

Bonferroni's correction and FWER control

Bonferroni's correction Reject the null hypotheses H_0^i for which $p_i \leq \frac{\alpha}{N}$, (N is the number of tests)

FWER control

Let I_0 be the indexes of the true null hypotheses, and $N_0 = \#I_0$

FWER =
$$\Pr\left(\bigcup_{i \in I_0} p_i \le \frac{\alpha}{N}\right) \le \sum_{i \in I_0} \Pr\left(p_i \le \frac{\alpha}{N}\right),\$$

= $N_0 \frac{\alpha}{N} \le \alpha,$

where the first inequality is the Boole's inequality $\Pr(\bigcup_i A_i) \leq \sum_i \Pr(A_i)$.

- ▶ Bonferroni's does not require that the tests be independent (the p_i can be dependent)
- Šidák correction 'improves' Bonferroni for independent tests by rejecting the H_0^i for which $p_i \leq 1 (1 \alpha)^{1/N} \leftarrow$ equivalent for small α/N to Bonferroni : no real improvement.

Stepwise FWER control procedures

Ordered p-values $p_{(1)} \leq p_{(2)} \leq \ldots \leq p_{(N)}$ and associated null hypotheses $H_0^{(1)},\ldots,H_0^{(N)}$

Step-down procedures

- Reject $H_0^{(k)}$ when $p_{(j)} \le t_{\alpha,j}$ for $j = 1, \dots, k$ (1)
- learning from the other experiments idea
- Reject $H_0^{(1)}, \ldots, H_0^{(\hat{k}_{\max})}$ where \hat{k}_{\max} is the largest index satisfying (1)
- \Leftrightarrow global threshold $\hat{t}_{\alpha} \equiv t_{\alpha, \hat{k}_{\max}} \leftarrow$ "testimation" problem
 - ► Holm's procedure : $t_{\alpha,j} = \frac{\alpha}{N-j+1}$ ensures FWER control at level α (not requiring independence) \leftarrow uniformly more powerful than Bonferroni

Step-up procedures

- ▶ Hochberg's procedure : $\hat{t}_{\alpha} = t_{\alpha,\hat{k}_{\max}}$ where \hat{k}_{\max} is the largest index satisfying $p_{(k)} \leq \frac{\alpha}{N-k+1}$
- \bowtie unif. more powerful than Holm but requires the tests to be independent

Practical limits of FWER

- \blacktriangleright FWER is appropriate to guard against *any* false positives
- In many applications, this appears to be too stringent : we can accept several false positives if their number is still much "lower" than the number of true positives...
- More liberal variants

$$k - \text{FWER} \equiv \Pr\left(\text{Reject at least } k \text{ true } H_0^i\right) = \Pr\left(U \ge k\right),$$

but how to preselect a relevant k for a given problem?

 ${\tt I}$ Need to define a less stringent global Type I Error rate criterion, more useful in many applications

False Discovery Rate FDR [Benjamini and Hochberg, 1995]

"Discovery" terminology

- $R \equiv \#$ Discoveries (Rejections)
- ▶ $U \equiv \#$ False Discoveries (False Positives) \leftarrow Type I errors,
- $T \equiv \#$ True Discoveries (True Positives),

	Decision			
		H_0 retained	H_0 rejected	Total
Actual	H_0 true	V	U	N_0
	H_0 false	S	T	N_1
	Total	N-R	R	N

Definition

 $\begin{aligned} \text{FDP} &\equiv \frac{U}{R \lor 1}, \text{ where } R \lor 1 \equiv \max{(R, 1)} \leftarrow \text{False Discovery Proportion} \\ \text{FDR} &\equiv E\left[\text{FDP}\right] = E\left[\frac{U}{R \lor 1}\right] \leftarrow \text{False Discovery Rate} \end{aligned}$

single test errors, or power, are calculated horizontally in the table

False Discovery Rate is calculated vertically (Bayesian flavor)

False Discovery Rate FDR [Benjamini and Hochberg, 1995]

"Discovery" terminology

- $R \equiv \#$ Discoveries (Rejections)
- ▶ $U \equiv \#$ False Discoveries (False Positives) \leftarrow Type I errors,
- $T \equiv \#$ True Discoveries (True Positives),

	Decision			
		H_0 retained	H_0 rejected	Total
Actual	H_0 true	V	U	N_0
Actual	H_0 false	S	T	N_1
	Total	N-R	R	N

Definition

$$\begin{split} \text{FDP} &\equiv \frac{U}{R \vee 1}, \text{ where } R \vee 1 \equiv \max{(R,1)} \leftarrow \text{False Discovery Proportion} \\ \text{FDR} &\equiv E\left[\text{FDP}\right] = E\left[\frac{U}{R \vee 1}\right] \leftarrow \text{False Discovery Rate} \end{split}$$

single test errors, or power, are calculated horizontally in the tableFalse Discovery Rate is calculated vertically (Bayesian flavor)

False Discovery Rate FDR [Benjamini and Hochberg, 1995]

"Discovery" terminology

- $R \equiv \#$ Discoveries (Rejections)
- ▶ $U \equiv \#$ False Discoveries (False Positives) \leftarrow Type I errors,
- $T \equiv \#$ True Discoveries (True Positives),

	Decision			
		H_0 retained	H_0 rejected	Total
Actual	H_0 true	V	U	N_0
	H_0 false	S	T	N_1
	Total	N-R	R	N

Definition

 $FDP \equiv \frac{U}{R \vee 1}, \text{ where } R \vee 1 \equiv \max(R, 1) \leftarrow False \text{ Discovery Proportion}$ $FDR \equiv E [FDP] = E \left[\frac{U}{R \vee 1}\right] \leftarrow False \text{ Discovery Rate}$

 \bowtie single test errors, or power, are calculated horizontally in the table

False Discovery Rate is calculated vertically (Bayesian flavor)

FDR control is more liberal than FWER

FWER control procedure controls FDR

$$\begin{aligned} \text{FDR} &= E\left[\frac{U}{R \lor 1}\right] = E\left[\frac{U}{R \lor 1} \middle| U = 0\right] \Pr\left(U = 0\right) + E\left[\frac{U}{R \lor 1} \middle| U > 0\right] \Pr\left(U > 0\right), \\ &= E\left[\frac{U}{R} \middle| U > 0\right] \Pr\left(U > 0\right), \quad \text{where } 0 \leq \frac{U}{R} \leq 1, \\ &\leq \Pr\left(U > 0\right) = \text{FWER} \end{aligned}$$

 ${\tt IS}$ Procedure controlling FWER at level α controls FDR at level α

FDR control procedure controls the FWER in the *weak* sense If all the nulls H_0^1, \ldots, H_0^N are true then U = R and

$$FDR = E\left[\frac{U}{R} \mid U > 0\right] Pr(U > 0) = 1 \times Pr(U > 0) = FWER$$

For Procedure controlling FDR at level q controls FDR at level q only when all null hypotheses are true

FDR control is more liberal than FWER

FWER control procedure controls FDR

$$\begin{aligned} \text{FDR} &= E\left[\frac{U}{R \lor 1}\right] = E\left[\frac{U}{R \lor 1} \middle| U = 0\right] \Pr\left(U = 0\right) + E\left[\frac{U}{R \lor 1} \middle| U > 0\right] \Pr\left(U > 0\right), \\ &= E\left[\frac{U}{R} \middle| U > 0\right] \Pr\left(U > 0\right), \quad \text{where } 0 \leq \frac{U}{R} \leq 1, \\ &\leq \Pr\left(U > 0\right) = \text{FWER} \end{aligned}$$

 ${\scriptstyle \boxtimes}$ Procedure controlling FWER at level α controls FDR at level α

FDR control procedure controls the FWER in the *weak* sense If all the nulls H_0^1, \ldots, H_0^N are true then U = R and

$$FDR = E\left[\frac{U}{R} \mid U > 0\right] Pr(U > 0) = 1 \times Pr(U > 0) = FWER$$

Is Procedure controlling FDR at level q controls FDR at level q only when all null hypotheses are true

Multiple Testing and FDR FDR control : Benjamini-Hochberg Procedure

Outline

Multiple testing error control

Basic statistical hypothesis testing concepts Family-Wise Error Rate FWER False Discovery Rate FDR

FDR control : Benjamini-Hochberg Procedure

BH Procedure Bayesian interpration of FDR Empirical Bayes interpretation of BH procedure

Variations on FDR control and BH Procedure

Improving power Dependence Learning the null distribution

Canonical example

Source detection (oversimplified) problem

Statiscal linear model (source + noise)

$$\begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_N \end{pmatrix} = \mu \begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_N \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_N \end{pmatrix}$$

- ▶ $\mu > 0 \leftarrow$ source response
- ▶ $r_i \in \{0, 1\}$ ← absence $(r_i = 0)$ or presence $(r_i = 1)$ of source for *i*th location
- ▶ $\epsilon_i, 1 \leq i \leq N$, are iid with $\mathcal{N}(0,1)$ distribution \leftarrow gaussian noise
- X_i is the *i*th observation

Canonical example (cont'd)

Multiple testing problem

for each \boldsymbol{i}

- ▶ H_0 : null hypothesis ≡ absence of signal, i.e. $r_i = 0$
- $\blacktriangleright~H_1$: alternative hypothesis \equiv presence of signal, i.e. $r_i=1$

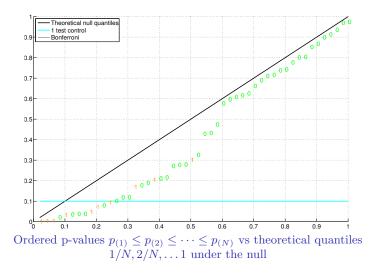
Test statistics

for each \boldsymbol{i}

- X_i is the test statistics
- ▶ $p_i = 1 \Phi(X_i)$, where Φ is the standard normal cdf, is the associated p-value

How to choose a good threshold t to reject the tests s.t. $p_i \leq t$?

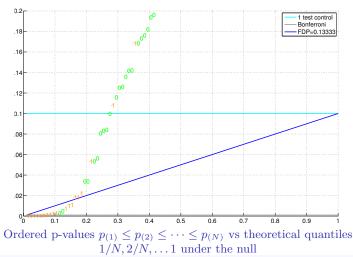
Ordered p-values plot for N = 50, $N_0 = 40$, $\mu = 2$, $\alpha = 0.1$



Multiple Testing and FDR FDR control : Benjamini-Hochberg Procedure

Ordered p-values plot for N = 100, $N_0 = 80$, $\mu = 3$, $\alpha = 0.1$

Try something between Bonferroni and one test control : choose $t_i = q \frac{i}{N}$ (here $q = \alpha = 0.1$)



Benjamini-Hochberg (BH) procedure

Ordered p-values $p_{(1)} \leq p_{(2)} \leq \ldots \leq p_{(N)}$ and associated null hypotheses $H_0^{(1)}, \ldots, H_0^{(N)}$, let $p_{(0)} = 0$ by convention

Step-up BH procedure

For a preselected control level $0 \le q \le 1$, BH_q procedure rejects $H_0^{(1)}, \ldots, H_0^{(\hat{k})}$ where

$$\hat{k} = \max\left\{ 0 \le k \le N : \ p_{(k)} \le q \frac{k}{N} \right\}$$

 \Leftrightarrow region of rejection $\mathcal{R}^{BH} = \left\{ p \leq \hat{t}_q \right\}$ with $\hat{t}_q = q \frac{\hat{k}}{N}$

 \square learning from the other experiments idea

☞ "testimation problem" : blurs the line between testing and estimation

FDR control of BH procedure

Theorem [Benjamini and Hochberg (1995)]

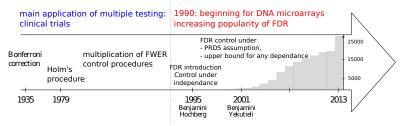
Under the independence assumption among the tests, BH_q procedure control the FDR at level :

$$FDR \le \frac{N_0}{N}q \le q,$$

where N_0 is the number of true null hypotheses

- ▶ in practice N_0 is unknown and bounded by N ($\pi_0 \equiv \frac{N_0}{N} \leq 1$)
- ▶ BH procedure control can be extended beyond independence for special cases of positive dependence [Benjamini and Yekutieli (2001)]
- Typical value of q: no real conventional choice in the literature, though q = 0.1 seems to be popular

Popularity of FDR and BH procedure



Historical context and citations of the seminal paper [Benjamini and Hochberg, 1995] (many thanks to Marine Roux for the picture)

FDR for Big Data

Large-scale hypothesis testing in many fields

- ▶ DNA microarray, genomics, fMRI data,.....
- \blacktriangleright Several works with a stronomical imaging applications since the early 2000s

Multiple Testing and FDR FDR control : Benjamini-Hochberg Procedure Bayesian interpration of FDR

Outline

Multiple testing error control

Basic statistical hypothesis testing concepts Family-Wise Error Rate FWER False Discovery Rate FDR

FDR control : Benjamini-Hochberg Procedure

BH Procedure Bayesian interpration of FDR

Empirical Bayes interpretation of BH procedure

Variations on FDR control and BH Procedure

Improving power Dependence Learning the null distribution

Mixture model

Denote by X one test statistic, and Γ any subset of the real line

Two Group Mixture model

N tests statistics are either null or non-null with prior probability

• $\pi_0 \equiv \Pr(H_0)$ (in practice, π_0 will be often close to 1),

$$\bullet \ \pi_1 \equiv \Pr\left(H_1\right) = 1 - \pi_0,$$

and respective distributions,

- $F_0(\Gamma) \equiv \Pr(X \in \Gamma | H_0) \leftarrow \text{null case}$
- $F_1(\Gamma) \equiv \Pr(X \in \Gamma | H_1) \leftarrow \text{non-null case}$

The distribution of any X is the mixture with distribution

$$F(\Gamma) = \pi_0 F_0(\Gamma) + \pi_1 F_1(\Gamma)$$

Bayesian Fdr

Classification problem

- We observe $x \in \Gamma$, does it corresponds to the null group ?
- \bowtie Applying the Bayes rule yields the posterior of the null

 $\Pr(H_0|X \in \Gamma) = \pi_0 F_0(\Gamma) / F(\Gamma)$

Bayesian false discovery rate [Efron (2004,2010)]

- Γ is now the region of rejection of the null
- ▶ Bayesian false discovery rate defined as

 $\operatorname{Fdr}(\Gamma) \equiv \Pr\left(H_0 | X \in \Gamma\right) = \pi_0 F_0(\Gamma) / F(\Gamma),$

Multiple Testing and FDR - FDR control : Benjamini-Hochberg Procedure - Bayesian interpration of FDR

Bayesian Fdr and positive FDR [Storey (2003)]

Positive FDR :
$$pFDR \equiv E\left[\frac{U}{R} \mid R > 0\right]$$

$$\blacksquare FDR = pFDR \times Pr(R > 0)$$

Theorem [Storey (2003)]

- $R \equiv R(\Gamma) = \#$ discoveries for the region of rejection Γ
- $U \equiv U(\Gamma) = \#$ false discoveries for the region of rejection Γ

If the X_i are independent and distributed according to the mixture model,

$$\operatorname{Fdr}(\Gamma) \equiv \Pr\left(H_0 | X \in \Gamma\right) = E\left[\frac{U(\Gamma)}{R(\Gamma)} \left| R(\Gamma) > 0\right] \quad \leftarrow \operatorname{Positive FDR}$$

▶ proof relies on $U(\Gamma) | R(\Gamma) = k \sim$ binomial distribution $\mathcal{B}(k, \operatorname{Fdr}(\Gamma))$ ☞ interpretation of a frequentist concept as a Bayesian one

Empirical Bayes Fdr estimate [Efron (2004, 2010)]

- ▶ F, F_0 and F_1 denote now the cdf of the mixture, null and non-null
- ▶ the test can be assumed to be left-sided : $\Gamma = (-\infty, t]$ and $p_i = F_0(x_i)$

Estimation of $Fdr(t) = \pi_0 F_0(t) / F(t)$

- F_0 , assumed to be known,
- π_0 , unknown but usually close to 1,
- \triangleright F_1 , unlikely to be known in large-scale inference

However $F = \pi_0 F_0 + \pi_1 F_1$ can be estimated by its empirical distribution :

$$\overline{F}(t) = \#\{x_i \le t\}/N$$

 \square does not require to specify H_1 : robust to alternative miss-specifications

- ${}^{\mbox{\tiny ISS}}$ empirical Bayes : prior on F estimated from the observations
- empirical Bayes Fdr estimate : $\overline{Fdr}(t) = \pi_0 F_0(t) / \overline{F}(t)$

Empirical Bayes Fdr estimate [Efron (2004, 2010)]

- ▶ F, F_0 and F_1 denote now the cdf of the mixture, null and non-null
- ▶ the test can be assumed to be left-sided : $\Gamma = (-\infty, t]$ and $p_i = F_0(x_i)$

Estimation of $Fdr(t) = \pi_0 F_0(t) / F(t)$

- F_0 , assumed to be known,
- π_0 , unknown but usually close to 1,
- \triangleright F_1 , unlikely to be known in large-scale inference

However $F = \pi_0 F_0 + \pi_1 F_1$ can be estimated by its empirical distribution :

$$\overline{F}(t) = \#\{x_i \le t\}/N$$

 \square does not require to specify H_1 : robust to alternative miss-specifications

- ${\scriptstyle \boxtimes}$ empirical Bayes : prior on F estimated from the observations
- empirical Bayes Fdr estimate : $\overline{\mathrm{Fdr}}(t) = \pi_0 F_0(t) / \overline{F}(t)$

Multiple Testing and FDR

FDR control : Benjamini-Hochberg Procedure

Empirical Bayes interpretation of BH procedure

Equivalence between Empirical Bayes Fdr control and BH procedure

Ordered observations $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(N)}$

•
$$F_0(x_{(i)}) = p_{(i)}$$
, and $\overline{F}(x_{(i)}) = i/N$

$$\Rightarrow \overline{\mathrm{Fdr}}(x_{(i)}) = \pi_0 \frac{N}{i} p_{(i)}$$

Fdr control at level $\pi_0 q$

Given a preselected q, find $\hat{t} = \max\left\{t : \overline{\mathrm{Fdr}}(t) \le \pi_0 q\right\}$

$$\Leftrightarrow t = \max_i x_{(i)} \text{ s.t. } p_{(i)} \le q \frac{i}{N}$$

$$\Leftrightarrow$$
 reject $H_0^{(1)}, \ldots, H_0^{(\hat{k})}$ where \hat{k} is the largest index s.t. $p_{(k)} \leq q \frac{k}{N}$

 $\Leftrightarrow \operatorname{BH}_q$ procedure

Fdr control and dependence

- ▶ $\overline{F}(t)$ is an unbiased estimator of F(t) even under dependence,
- ▶ Fdr is a rather slightly upward biased estimate of FDR even under dependence [Efron (2010)],
- price of dependence is the variance of the estimator $\overline{\mathrm{Fdr}}(t)$

Multiple Testing and FDR

FDR control : Benjamini-Hochberg Procedure

Empirical Bayes interpretation of BH procedure

Equivalence between Empirical Bayes Fdr control and BH procedure

Ordered observations $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(N)}$

•
$$F_0(x_{(i)}) = p_{(i)}$$
, and $\overline{F}(x_{(i)}) = i/N$

$$\Rightarrow \overline{\mathrm{Fdr}}(x_{(i)}) = \pi_0 \frac{N}{i} p_{(i)}$$

Fdr control at level $\pi_0 q$

Given a preselected q, find $\hat{t} = \max\left\{t : \overline{\mathrm{Fdr}}(t) \le \pi_0 q\right\}$

$$\Leftrightarrow t = \max_i x_{(i)} \text{ s.t. } p_{(i)} \le q \frac{i}{N}$$

$$\Leftrightarrow$$
 reject $H_0^{(1)}, \ldots, H_0^{(k)}$ where \hat{k} is the largest index s.t. $p_{(k)} \leq q \frac{k}{N}$

 \Leftrightarrow BH_q procedure

Fdr control and dependence

- ▶ $\overline{F}(t)$ is an unbiased estimator of F(t) even under dependence,
- ▶ Fdr is a rather slightly upward biased estimate of FDR even under dependence [Efron (2010)],
- price of dependence is the variance of the estimator $\overline{\mathrm{Fdr}}(t)$

Outline

Multiple testing error control

Basic statistical hypothesis testing concepts Family-Wise Error Rate FWER False Discovery Rate FDR

FDR control : Benjamini-Hochberg Procedure

BH Procedure Bayesian interpration of FDR Empirical Bayes interpretation of BH procedure

Variations on FDR control and BH Procedure

Improving power Dependence Learning the null distribution

Estimation of the proportion π_0 of true H_0

Adaptive BH procedures [Benjamini et al. (2006), Storey et al. (2004)]

- ▶ BH procedure overcontrols FDR : FDR(BH_q) = $\pi_0 q$, where $\pi_0 = \frac{N_0}{N}$
- ▶ an upward bias estimator $\hat{\pi}_0$ of π_0 can be plugged to improve power
- Adaptive BH procedure : BH procedure at control level
 $q/\hat{\pi}_0$ to obtain a FDR control at nominal level
 q

Storey's π_0 estimator [Storey *et al.* (2004)]

• Survival function G(t) = 1 - F(t) of the p-values

 $G(\lambda) = \pi_0 G_0(\lambda) + \pi_1 G_1(\lambda) \ge \pi_0 G_0(\lambda) = \pi_0 (1 - \lambda)$

so for large enough λ , $G_1(\lambda) \approx 0$, thus $\pi_0 \approx G(\lambda)/(1-\lambda)$

Based on the empirical survival function, the modified Storey's estimator is

$$\hat{\pi}_0(\lambda) = \frac{\#\{p_i > \lambda\} + 1}{N(1 - \lambda)}, \text{ for a given } \lambda \in (0, 1),$$

Estimation of the proportion π_0 of true H_0

Adaptive BH procedures [Benjamini et al. (2006), Storey et al. (2004)]

- ▶ BH procedure overcontrols FDR : FDR(BH_q) = $\pi_0 q$, where $\pi_0 = \frac{N_0}{N}$
- ▶ an upward bias estimator $\hat{\pi}_0$ of π_0 can be plugged to improve power
- Adaptive BH procedure : BH procedure at control level
 $q/\hat{\pi}_0$ to obtain a FDR control at nominal level
 q

Storey's π_0 estimator [Storey *et al.* (2004)]

Survival function G(t) = 1 - F(t) of the p-values

$$G(\lambda) = \pi_0 G_0(\lambda) + \pi_1 G_1(\lambda) \ge \pi_0 G_0(\lambda) = \pi_0 (1 - \lambda)$$

so for large enough λ , $G_1(\lambda) \approx 0$, thus $\pi_0 \approx G(\lambda)/(1-\lambda)$

Based on the empirical survival function, the modified Storey's estimator is

$$\hat{\pi}_0(\lambda) = \frac{\#\{p_i > \lambda\} + 1}{N(1 - \lambda)}, \quad \text{for a given } \lambda \in (0, 1),$$

Adaptive BH procedures : Storey's π_0 estimator

Properties of adaptive BH procedure with modified Storey's estimator $\hat{\pi}_0(\lambda)$

- \blacktriangleright exact control of FDR at nominal level q for independent tests,
- ▶ asymptotic control of FDR in case of weak dependence

Typical values of λ

Based on various simulations [Blanchard et al. (2009)]

- ▶ $\lambda = \frac{1}{2} \leftarrow$ "uniformly" more powerful than other adaptive procedures, but not robust to strong dependences (e.g. equicorrelation of the test statistics)
- ▶ $\lambda = q \leftarrow$ powerful and quite robust to long memory dependences

Extension of BH procedure to dependent tests

Positive Regression Dependence on a Subset PRDS [Benjamini *et al.* (2001)] BH procedure still controls FDR at nominal value q when the test statistics vector obey the PRDS property : e.g. for one-sided tests

- Gaussian vector with positive correlations,
- ▶ Studentized gaussian PRDS vector for $q \le 0.5$

Universal bound [Benjamini and Yekutieli (2001)]

For any dependence structure, BH procedure still controls FDR at level

$$\operatorname{FDR}(\operatorname{BH}_q) \le \pi_0 q c,$$

where $\pi_0 = \frac{N_0}{N}$ and $c = \sum_{i=1}^N \frac{i}{N} \approx \log(N)$

▶ too conservative to be useful in practice (more conservative than Bonferroni when the number of rejected test \hat{k} is lower than c) Multiple Testing and FDR Variations on FDR control and BH Procedure Dependence

Knockoff filter for dependent tests [Barber and Candes (2015)]

Statistical linear model

 $y = Xeta + \epsilon$

- $\boldsymbol{y} \in \mathbb{R}^n$ is the response vector
- $\boldsymbol{\epsilon} \in \mathbb{R}^n$ is a white gaussian noise vector
- $X \in \mathbb{R}^{n \times p}$ is a determistic matrix of the *p* column predictors
- $\boldsymbol{\beta} \in \mathbb{R}^p$ is the weight vector

Multiple testing problem : predictors associated with the response?

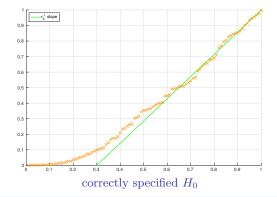
- H_0^i : " $\beta_i = 0$ ", for $1 \le i \le p$
- ${\ensuremath{\,{\scriptscriptstyle \blacksquare}}}$ Knockoff construction to control FDR based on any model selection procedure
- Is Application to large-scale hypothesis testing, and/or strong local dependences ?

Null hypothesis specification diagnonis

- ▶ BH procedure requires so little : only the choice of the test statistics and its specification when the null hypothesis is true
- crucial to check that the null is correctly specified before !

Graphical diagnonis

qq-plot of the p-values must be linear for large enough values

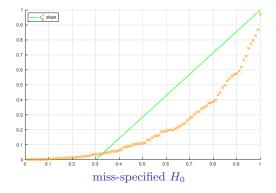


Null hypothesis specification diagnonis

- ▶ BH procedure requires so little : only the choice of the test statistics and its specification when the null hypothesis is true
- crucial to check that the null is correctly specified before !

Graphical diagnonis

qq-plot of the p-values must be linear for large enough values



Learning the null distribution

Deviation from the theoretical null

- ▶ theoretical null hypothesis usually derived in an idealized framework, does not not account for sample correlations,...
- ☞ unlikely to be correctly specified in large-scale testing!
- \bowtie possibility to detect and correct possible miss-specification of the null hypothesis

Empirical null distribution [Efron 2010]

Parametric H_0 estimation : based on the observations that are the most likely under theoretical H_0 , estimates of the null parameters (and π_0)

- ▶ central matching
- maximum likelihood

Non-parametric H_0 estimation

permutation null distribution

Concluding remarks

- ▶ FDR is a very useful global error criterion that allows one to control a trade-off between Type I error and Power
- ▶ BH procedure is a very simple and quite robust procedure to control FDR
- Main important problem and challenges still concerns the dependence : how to explicitly account for dependence ?

Selected references

- Barber, R. F. and Candes, E. (2015). "Controlling the False Discovery Rate via Knockoffs," to appear in Annals of Statistics, arXiv preprint arXiv:1404.5609
- Benjamini, Y. and Hochberg, Y. (1995), "Controlling the false discovery rate : a practical and powerful approach to multiple testing," *Journal of the Royal Statistical Society*, Series B (Methodological), 289-300
- Benjamini, Y. Krieger, A. M. and Yekutieli, D. (2006) "Adaptive linear step-up procedures that control the false discovery rate," *Biometrika*, 93(3):491-507.
- Benjamini, Y. and Yekutieli, D. (2001), "The control of the false discovery rate in multiple testing under dependency," Annals of Statistics, 1165-1188.
- Blanchard, G. and Roquain, E. (2009) "Adaptive False Discovery Rate Control under Independence and Dependence," Journal of Machine Learning Research 10, 2837-2871
- Efron, B. (2004), "Large-scale simultaneous hypothesis testing," Journal of the American Statistical Association, 99(465).
- Efron, B. (2010), "Large-scale inference : empirical Bayes methods for estimation, testing, and prediction," (Vol. 1), Cambridge University Press
- Ioannidis, J. P. (2005), "Why most published research findings are false," *PLoS medicine*, 2(8)
- Storey, J. D. (2002), "A direct approach to false discovery rates," Journal of the Royal Statistical Society : Series B (Statistical Methodology), 64(3), 479-498
- Storey, J. D. (2003), "The positive false discovery rate : A Bayesian interpretation and the q-value," Annals of statistics, 2013-2035
- Storey, J. D., Taylor, J. E. and Siegmund, D. (2004) "Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates : a unified approach," Journal of the Royal Statistical Society : Series B (Statistical Methodology), 66(1), 187-205

Selected references with Astrophysics applications

- Clements, N., Sarkar, S. K. and Guo, W. (2012), "Astronomical transient detection controlling the false discovery rate," *Statistical Challenges in Modern Astronomy*, vol V (pp. 383-396), Springer New York
- Friedenberg, D. A. and Genovese, C. R. (2013), "Straight to the Source : Detecting Aggregate Objects in Astronomical Images With Proper Error Control," *Journal of the American Statistical Association*, 108(502), 456-468
- Hopkins, A. M. et al., (2002), "A new source detection algorithm using the false-discovery rate," The Astronomical Journal, 123(2), 1086.
- Miller, C. J. et al., (2001), "Controlling the false-discovery rate in astrophysical data analysis," The Astronomical Journal, 122(6), 3492.
- Pacifico, P.M. et al., (2004), "False discovery control for random fields," Journal of the American Statistical Association, 99(468), 1002-1014.
- Serra, P. et al., (2015), "SoFiA : a flexible source finder for 3D spectral line data," arXiv preprint arXiv :1501.03906.
- Meillier, C. et al., (2015), "Error control for the detection of rare and weak signatures in massive data", to appear in Proc. of EUSIPCO 2015

Great talks on multiple testing / FDR available on the web

Genovese, C. R. "A Tutorial on False Discovery Control," http://www.stat.cmu.edu/~genovese/talks/hannover1-04.pdf

Roquain, E. (2014) "False Discovery Rate. Part I : Introduction et Enjeux" http://www.proba.jussieu.fr/pageperso/picard/roquain-pdv-part1.pdf

Benjamini Y. (2005) "Discovering the False Discovery Rate,"
http://www.researchgate.net/profile/Yoav_Benjamini/
publication/227532102_Discovering_the_false_discovery_rate/
links/0c960517bfb2c2d516000000.pdf

Supplementary materials

Some proofs of the BH procedure FDR control

- ▶ FDR control under independence
- ▶ FDR control under PRDS property
- ▶ universal FDR bound for an arbitrary depedence structure

proof of the FDR control of BH procedure

- ▶ $\mathcal{R} \equiv$ set of discoveries, $\mathcal{H}_0 \equiv$ set of N_0 tur null hypotheses
- indicator trick : for discrete random variables $E[A|B=b] \Pr(B=b) = E[A \times \mathbb{1}_{B=b}]$

$$\begin{split} \operatorname{FDR} &= \sum_{k=1}^{N} E\left[\left. \frac{|\mathcal{R} \cap \mathcal{H}_{0}|}{k} \right| \ |\mathcal{R}| = k \right] \operatorname{Pr}(|\mathcal{R}| = k) = \sum_{k=1}^{N} \frac{1}{k} E\left[|\mathcal{R} \cap \mathcal{H}_{0}| \times \mathbbm{1}_{|\mathcal{R}| = k} \right], \\ &= \sum_{k=1}^{N} \frac{1}{k} E\left[\sum_{i \in \mathcal{H}_{0}} \mathbbm{1}_{p_{i} \leq q, \frac{k}{N}} \times \mathbbm{1}_{|\mathcal{R}| = k} \right] = \sum_{i \in \mathcal{H}_{0}} \sum_{k=1}^{N} \frac{1}{k} \operatorname{Pr}\left(\hat{k} = k, p_{i} \leq q, \frac{k}{N} \right), \\ &= \frac{q}{N} \sum_{i \in \mathcal{H}_{0}} \sum_{k=1}^{N} \operatorname{Pr}\left(\hat{k} = k \left| p_{i} \leq q, \frac{k}{N} \right| \right), \end{split}$$

where the last equality comes from $p_i \sim \mathcal{U}_{[0,1]}$ under the null (this becomes an inequality \leq if p_i is assumed to be stocahstically greater than $\mathcal{U}_{[0,1]}$ under the null)

proof of the FDR control of BH procedure (cont'd)

Independent case

$$\hat{k}^{i} \equiv \text{number of discoveries except the ith test (r.v. in \{0, \dots, N-1\}),$$

$$\text{ Pr}\left(\hat{k} = k \left| p_{i} \leq q \frac{k}{N} \right. \right) = \Pr\left(\hat{k}^{i} = k - 1 \left| p_{i} \leq q \frac{k}{N} \right. \right) = \Pr\left(\hat{k}^{i} = k - 1\right)$$

$$\text{FDR} = \frac{q}{N} \sum_{i \in \mathcal{H}_{0}} \sum_{k=1}^{N} \Pr\left(\hat{k} = k \left| p_{i} \leq q \frac{k}{N} \right. \right) = \frac{q}{N} \sum_{i \in \mathcal{H}_{0}} \sum_{k=0}^{N-1} \Pr\left(\hat{k}^{i} = k - 1\right) = \frac{q}{N} \sum_{i \in \mathcal{H}_{0}} \sum_{k=0}^{N-1} \Pr\left(\hat{k}^{i} = k - 1\right) = \frac{q}{N} \sum_{i \in \mathcal{H}_{0}} \sum_{k=0}^{N-1} \Pr\left(\hat{k}^{i} = k - 1\right) = \frac{q}{N} \sum_{i \in \mathcal{H}_{0}} \sum_{k=0}^{N-1} \Pr\left(\hat{k}^{i} = k - 1\right) = \frac{q}{N} \sum_{i \in \mathcal{H}_{0}} \sum_{k=0}^{N-1} \Pr\left(\hat{k}^{i} = k - 1\right) = \frac{q}{N} \sum_{i \in \mathcal{H}_{0}} \sum_{k=0}^{N-1} \Pr\left(\hat{k}^{i} = k - 1\right) = \frac{q}{N} \sum_{i \in \mathcal{H}_{0}} \sum_{k=0}^{N-1} \Pr\left(\hat{k}^{i} = k - 1\right) = \frac{q}{N} \sum_{i \in \mathcal{H}_{0}} \sum_{k=0}^{N-1} \Pr\left(\hat{k}^{i} = k - 1\right) = \frac{q}{N} \sum_{i \in \mathcal{H}_{0}} \sum_{k=0}^{N-1} \Pr\left(\hat{k}^{i} = k - 1\right) = \frac{q}{N} \sum_{i \in \mathcal{H}_{0}} \sum_{k=0}^{N-1} \Pr\left(\hat{k}^{i} = k - 1\right) = \frac{q}{N} \sum_{i \in \mathcal{H}_{0}} \sum_{k=0}^{N-1} \Pr\left(\hat{k}^{i} = k - 1\right) = \frac{q}{N} \sum_{i \in \mathcal{H}_{0}} \sum_{k=0}^{N-1} \Pr\left(\hat{k}^{i} = k - 1\right) = \frac{q}{N} \sum_{i \in \mathcal{H}_{0}} \sum_{k=0}^{N-1} \Pr\left(\hat{k}^{i} = k - 1\right) = \frac{q}{N} \sum_{i \in \mathcal{H}_{0}} \sum_{k=0}^{N-1} \Pr\left(\hat{k}^{i} = k - 1\right) = \frac{q}{N} \sum_{i \in \mathcal{H}_{0}} \sum_{k=0}^{N-1} \Pr\left(\hat{k}^{i} = k - 1\right) = \frac{q}{N} \sum_{i \in \mathcal{H}_{0}} \sum_{k=0}^{N-1} \Pr\left(\hat{k}^{i} = k - 1\right) = \frac{q}{N} \sum_{i \in \mathcal{H}_{0}} \sum_{k=0}^{N-1} \Pr\left(\hat{k}^{i} = k - 1\right) = \frac{q}{N} \sum_{i \in \mathcal{H}_{0}} \sum_{k=0}^{N-1} \Pr\left(\hat{k}^{i} = k - 1\right) = \frac{q}{N} \sum_{i \in \mathcal{H}_{0}} \sum_{k=0}^{N-1} \Pr\left(\hat{k}^{i} = k - 1\right) = \frac{q}{N} \sum_{i \in \mathcal{H}_{0}} \sum_{k=0}^{N-1} \Pr\left(\hat{k}^{i} = k - 1\right) = \frac{q}{N} \sum_{i \in \mathcal{H}_{0}} \sum_{i \in \mathcal{$$

PRDS case

▶ PRDS :
$$u \mapsto \Pr\left(\hat{k} \le k \mid p_i = u\right)$$
 is increasing in u
■ $\Pr\left(\hat{k} \le k - 1 \mid p_i \le q \frac{k}{N}\right) \ge \Pr\left(\hat{k} \le k - 1 \mid p_i \le q \frac{k-1}{N}\right)$

$$\sum_{k=1}^{N} \Pr\left(\hat{k} = k \mid p_i \le q \frac{k}{N}\right) = \sum_{k=1}^{N} \Pr\left(\hat{k} \le k \mid p_i \le q \frac{k}{N}\right) - \Pr\left(\hat{k} \le k - 1 \mid p_i \le q \frac{k}{N}\right),$$

$$\le \sum_{k=1}^{N} \Pr\left(\hat{k} \le k \mid p_i \le q \frac{k}{N}\right) - \Pr\left(\hat{k} \le k - 1 \mid p_i \le q \frac{k-1}{N}\right)$$

$$= \Pr\left(\hat{k} \le N \mid p_i \le q\right) - \Pr\left(\hat{k} \le 1 \mid p_i \le \frac{q}{N}\right) + \Pr\left(\hat{k} = 1 \mid p_i \le \frac{q}{N}\right) = 1,$$
thus FDR $\le \frac{N_0}{N}q$

proof of the FDR control bound for arbitrary dependence

Arbitrary dependence

$$\begin{split} & \stackrel{1}{k} = \frac{1}{k-1} - \frac{1}{k(k-1)} \\ & \text{FDR} = \sum_{i \in \mathcal{H}_0} \sum_{k=1}^N \left[\frac{1}{k} \Pr\left(\hat{k} \le k, p_i \le q \frac{k}{N} \right) - \frac{1}{k} \Pr\left(\hat{k} \le k - 1, p_i \le q \frac{k}{N} \right) \right], \\ & \leq \sum_{i \in \mathcal{H}_0} \sum_{k=1}^N \frac{1}{k} \Pr\left(\hat{k} \le k, p_i \le q \frac{k}{N} \right) - \sum_{i \in \mathcal{H}_0} \sum_{k=2}^N \frac{1}{k} \Pr\left(\hat{k} \le k - 1, p_i \le q \frac{k - 1}{N} \right), \\ & = \sum_{i \in \mathcal{H}_0} \sum_{k=1}^N \frac{1}{k} \Pr\left(\hat{k} \le k, p_i \le q \frac{k}{N} \right) - \sum_{i \in \mathcal{H}_0} \sum_{k=2}^N \frac{1}{k-1} \Pr\left(\hat{k} \le k - 1, p_i \le q \frac{k-1}{N} \right) \\ & + \sum_{i \in \mathcal{H}_0} \sum_{k=2}^N \frac{1}{k(k-1)} \Pr\left(\hat{k} \le k - 1, p_i \le q \frac{k-1}{N} \right), \\ & \leq \sum_{i \in \mathcal{H}_0} \frac{1}{N} \Pr\left(p_i \le q \right) + \sum_{i \in \mathcal{H}_0} \sum_{k=2}^N \frac{1}{k(k-1)} \Pr\left(p_i \le q \frac{k-1}{N} \right), \\ & = \frac{N_0}{N} q + \frac{N_0}{N} q \left(\frac{1}{2} + \ldots + \frac{1}{N} \right) = \frac{N_0}{N} q \sum_{j=1}^N \frac{1}{j} \end{split}$$