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Multiple Testing and FDR

Introduction

Multiplicity problem and chance correlation

Lottery

I Winning probability for a given
ticket is very low...

I But among the huge number of
tickets, the probablity that there
is at least one winning ticket is
quite high !

Paul the octopus

I Paul predicts eight of the 2010
FIFA World Cup matches with a
perfect score !

I Does it really means that Paul is
an Oracle ?

+ Large-scale experiments : multiplying the comparisons dramatically
increases the probability to obtain a good match by pure chance
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Introduction

Multiplicity problem for statistical testing

I T is the test statistics,

I Rα is the region of rejection at level α : if H0 is true, Pr(T ∈ Rα) = α

Multiple testing issue

I N independent statistics T1, . . . , TN obtained under the null H0

I Probability to reject at least one of the N null hypotheses :

Pr (∃Ti ∈ Rα) = 1− Pr (T1, . . . , TN /∈ Rα) = 1−
N∏
i=1

Pr (Ti /∈ Rα),

= 1−
N∏
i=1

(1− α) = 1− (1− α)N

I for a usual significative level α = 0.05, performing N = 20 tests gives a
probability 0.64 to find a ’significative’ discovery by pure chance...

+ Pr ( at least one false positive )� Pr ( the i-th is a false positive )
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Introduction

Multiplicity problem in science

The Economist, 2013, “Unreliable research”

Many published research
findings in top-ranked
journals are not, or poorly,
reproducible [Ioannidis,
2005]

I if the test power is only 0.4, 40 true positives in average for 45 false
positives. Is this significant ?
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Introduction

Large-Scale Hypothesis Testing [Efron, 2010]

Era of Massive Data Production

I “omics” revolution, e.g. microarrays measures expression levels of tens
of thousands of genes for hundreds of subjects

I astrophysics, e.g. MUSE spectro-imager delivers cubes of 300× 300
images for 3600 wavelengths : detecting faint sources leads to
N ≈ 3× 108 tests in a pixelwise approach

Large-Scale methodology

I statistical inference and hypothesis testing theory devolopped in the
early 20th century (Pearson, Fisher, Neyman, . . . ) for small-data sets
collected by individual scientist

+ corrections are needed to assess significancy in large-scale experiments
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Multiple testing error control

Basic statistical hypothesis testing concepts

Type I and Type II Errors

For an individual statistical hypothesis testing

Decision
H0 retained H0 rejected

Actual
H0 true

True Negative (TN) False Positive (FP)
1− α Type I Error α

H0 false
False Negative (FN) True Positive (TP)

Type II Error β 1− β

I False Positive ← false alarm,

I False Negative ← miss-detection,

I α = Pr(Type I Error) ← significance level,

I β = Pr(Type II Error)

I power π = Pr(True Positive) = 1− β
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Multiple testing error control

Basic statistical hypothesis testing concepts

P -values : an universal language for hypothesis testing

Intuitive definition
p-value ≡ probability of obtaining a result as extreme or “more extreme”
than the observed statistics, under H0

One-sided test example

I T is the test statistic, tobs an observed realization of T

I H0 rejected when tobs is too large : Rα = {t : t ≥ ηα}

p(tobs) = PrH0 (T ≥ tobs)

p

tobs

Mathematical definition
Smallest value of α such that tobs ∈ Rα

p(tobs) = inf
α
{tobs ∈ Rα}
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Multiple testing error control

Basic statistical hypothesis testing concepts

Property of p-values

I Note that p(tobs) ≤ u⇔ tobs ∈ Ru, for all u ∈ [0, 1]

I Let P = p(T ) be the random variable. If H0 is true

PrH0(P ≤ u) = PrH0(T ∈ Ru) = u,

+ p-value ≡ transformation of the test statistics to be uniformly
distributed under the null (whatever the distribution of T )

Statistical hypothesis test based on p-value

H0 : p-value has a uniform distribution on [0, 1] : P ∼ U([0, 1])

H1 : p-value is stochastically lower than U([0, 1]) :
PrH1(P ≤ u) = PrH1(T ∈ Ru) > u,

+ the smaller is p ≡ p(tobs), the more decisevely is H0 rejected

+ for a given α, H0 is rejected at level α if p ≤ α
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Multiple testing error control

Basic statistical hypothesis testing concepts

Counting the errors in multiple testing

I N hypothesis tests with a common procedure

Decision
H0 retained H0 rejected Total

Actual
H0 true V U N0

H0 false S T N1

Total N −R R N

I N0 = # true nulls, N1 = # true alternatives

I U = # False Positives ← Type I Errors

I T = # True Positives,

I R = # Rejections

How to define, and control, a global Type I Error rate/criterion ?
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Multiple testing error control

Family-Wise Error Rate FWER

Family-Wise Error Rate FWER

Multiple testing settings for N tests

I H1
0 , H

2
0 , . . . , H

N
0 ≡ family of null hypotheses

I p1, p2, . . . , pN ≡ corresponding p-values

Definition

I The familywise error rate is

FWER ≡ Pr
(

Reject at least one true Hi
0

)
= Pr (U > 0)

I A FWER control procedure inputs a family of p-values p1, p2, . . . , pN
and outputs the list of rejected null hypotheses with the constraint

FWER ≤ α

for any preselected α
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Multiple testing error control

Family-Wise Error Rate FWER

Bonferroni’s correction and FWER control

Bonferroni’s correction
Reject the null hypotheses Hi

0 for which pi ≤
α

N
, (N is the number of tests)

FWER control
Let I0 be the indexes of the true null hypotheses, and N0 = #I0

FWER = Pr

(⋃
i∈I0

pi ≤
α

N

)
≤
∑
i∈I0

Pr
(
pi ≤

α

N

)
,

= N0
α

N
≤ α,

where the first inequality is the Boole’s inequality Pr (∪iAi) ≤
∑
i Pr (Ai).

I Bonferroni’s does not require that the tests be independent (the pi can
be dependent)

I Šidák correction ’improves’ Bonferroni for independent tests by
rejecting the Hi

0 for which pi ≤ 1− (1− α)1/N ← equivalent for small
α/N to Bonferroni : no real improvement.
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Multiple testing error control
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Multiple testing error control

Family-Wise Error Rate FWER

Stepwise FWER control procedures
Ordered p-values p(1) ≤ p(2) ≤ . . . ≤ p(N) and associated null hypotheses

H
(1)
0 , . . . , H

(N)
0

Step-down procedures

I Reject H
(k)
0 when p(j) ≤ tα,j for j = 1, . . . , k (1)

+ learning from the other experiments idea

I Reject H
(1)
0 , . . . ,H

(k̂max)
0 where k̂max is the largest index satisfying (1)

⇔ global threshold t̂α ≡ tα,k̂max
← “testimation” problem

I Holm’s procedure : tα,j = α
N−j+1

ensures FWER control at level α (not

requiring independence) ← uniformly more powerful than Bonferroni

Step-up procedures

I Hochberg’s procedure : t̂α = tα,k̂max
where k̂max is the largest index

satisfying p(k) ≤ α
N−k+1

+ unif. more powerful than Holm but requires the tests to be independent
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Multiple testing error control

Family-Wise Error Rate FWER

Practical limits of FWER

I FWER is appropriate to guard against any false positives

I In many applications, this appears to be too stringent : we can accept
several false positives if their number is still much “lower” than the
number of true positives...

I More liberal variants

k − FWER ≡ Pr
(

Reject at least k true Hi
0

)
= Pr (U ≥ k),

but how to preselect a relevant k for a given problem ?

+ Need to define a less stringent global Type I Error rate criterion, more
useful in many applications
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Multiple testing error control

False Discovery Rate FDR

False Discovery Rate FDR [Benjamini and Hochberg, 1995]

“Discovery” terminology

I R ≡ # Discoveries (Rejections)

I U ≡ # False Discoveries (False Positives) ← Type I errors,

I T ≡ # True Discoveries (True Positives),

Decision
H0 retained H0 rejected Total

Actual
H0 true V U N0

H0 false S T N1

Total N −R R N
Definition

FDP ≡ U

R ∨ 1
, where R ∨ 1 ≡ max (R, 1)← False Discovery Proportion

FDR ≡ E [FDP] = E

[
U

R ∨ 1

]
← False Discovery Rate

+ single test errors, or power, are calculated horizontally in the table

+ False Discovery Rate is calculated vertically (Bayesian flavor)
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Multiple testing error control

False Discovery Rate FDR
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Multiple testing error control

False Discovery Rate FDR

FDR control is more liberal than FWER

FWER control procedure controls FDR

FDR = E

[
U

R ∨ 1

]
= E

[
U

R ∨ 1

∣∣∣U = 0

]
Pr (U = 0) + E

[
U

R ∨ 1

∣∣∣U > 0

]
Pr (U > 0),

= E

[
U

R

∣∣∣U > 0

]
Pr (U > 0), where 0 ≤

U

R
≤ 1,

≤ Pr (U > 0) = FWER

+ Procedure controlling FWER at level α controls FDR at level α

FDR control procedure controls the FWER in the weak sense

If all the nulls H1
0 , . . . , H

N
0 are true then U = R and

FDR = E

[
U

R

∣∣∣U > 0

]
Pr (U > 0) = 1× Pr (U > 0) = FWER

+ Procedure controlling FDR at level q controls FDR at level q only
when all null hypotheses are true
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FDR control : Benjamini-Hochberg Procedure
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FDR control : Benjamini-Hochberg Procedure

Canonical example

Source detection (oversimplified) problem

Statiscal linear model (source + noise)
X1

X2

...
XN

 = µ


r1

r2

...
rN

+


ε1
ε2
...
εN


I µ > 0 ← source response

I ri ∈ {0, 1} ← absence (ri = 0) or presence (ri = 1) of source for ith
location

I εi, 1 ≤ i ≤ N , are iid with N (0, 1) distribution ← gaussian noise

I Xi is the ith observation
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FDR control : Benjamini-Hochberg Procedure

Canonical example (cont’d)

Multiple testing problem

for each i

I H0 : null hypothesis ≡ absence of signal, i.e. ri = 0

I H1 : alternative hypothesis ≡ presence of signal, i.e. ri = 1

Test statistics
for each i

I Xi is the test statistics

I pi = 1− Φ(Xi), where Φ is the standard normal cdf, is the associated
p-value

How to choose a good threshold t to reject the tests s.t. pi ≤ t ?
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FDR control : Benjamini-Hochberg Procedure

Ordered p-values plot for N = 50, N0 = 40, µ = 2, α = 0.1
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FDR control : Benjamini-Hochberg Procedure

Ordered p-values plot for N = 100, N0 = 80, µ = 3, α = 0.1
Try something between Bonferroni and one test control : choose ti = q i

N

(here q = α = 0.1)
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FDR control : Benjamini-Hochberg Procedure

BH Procedure

Benjamini-Hochberg (BH) procedure

Ordered p-values p(1) ≤ p(2) ≤ . . . ≤ p(N) and associated null hypotheses

H
(1)
0 , . . . , H

(N)
0 , let p(0) = 0 by convention

Step-up BH procedure

For a preselected control level 0 ≤ q ≤ 1, BHq procedure rejects

H
(1)
0 , . . . , H

(k̂)
0 where

k̂ = max

{
0 ≤ k ≤ N : p(k) ≤ q

k

N

}

⇔ region of rejection RBH =
{
p ≤ t̂q

}
with t̂q = q k̂

N

+ learning from the other experiments idea

+ “testimation problem” : blurs the line between testing and estimation
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FDR control : Benjamini-Hochberg Procedure

BH Procedure

FDR control of BH procedure

Theorem [Benjamini and Hochberg (1995)]

Under the independence assumption among the tests, BHq procedure
control the FDR at level :

FDR ≤ N0

N
q ≤ q,

where N0 is the number of true null hypotheses

I in practice N0 is unknown and bounded by N (π0 ≡ N0
N
≤ 1)

I BH procedure control can be extended beyond independence for special
cases of positive dependence [Benjamini and Yekutieli (2001)]

I Typical value of q : no real conventional choice in the literature,
though q = 0.1 seems to be popular
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FDR control : Benjamini-Hochberg Procedure

BH Procedure

Popularity of FDR and BH procedure

1935

correction
Bonferroni

1979 1995
Benjamini
Hochberg

2001
Benjamini
Yekutieli

2013

Holm's
procedure

multiplication of FWER
control procedures FDR introduction

Control under 
independance

FDR control under 
- PRDS assumption, 
- upper bound for any dependance 

1990: beginning for DNA microarrays
increasing popularity of FDR

main application of multiple testing:
clinical trials

25000

15000

5000

Historical context and citations of the seminal paper [Benjamini and
Hochberg, 1995] (many thanks to Marine Roux for the picture)

FDR for Big Data

Large-scale hypothesis testing in many fields

I DNA microarray, genomics, fMRI data,. . . ...

I Several works with astronomical imaging applications since the early
2000s
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FDR control : Benjamini-Hochberg Procedure

Bayesian interpration of FDR

Mixture model

Denote by X one test statistic, and Γ any subset of the real line

Two Group Mixture model

N tests statistics are either null or non-null with prior probability

I π0 ≡ Pr (H0) (in practice, π0 will be often close to 1),

I π1 ≡ Pr (H1) = 1− π0,

and respective distributions,

I F0(Γ) ≡ Pr(X ∈ Γ|H0) ← null case

I F1(Γ) ≡ Pr(X ∈ Γ|H1) ← non-null case

The distribution of any X is the mixture with distribution

F (Γ) = π0F0(Γ) + π1F1(Γ)
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FDR control : Benjamini-Hochberg Procedure

Bayesian interpration of FDR

Bayesian Fdr

Classification problem

I We observe x ∈ Γ, does it corresponds to the null group ?

+ Applying the Bayes rule yields the posterior of the null

Pr (H0|X ∈ Γ) = π0F0(Γ)/F (Γ)

Bayesian false discovery rate [Efron (2004,2010)]

I Γ is now the region of rejection of the null

I Bayesian false discovery rate defined as

Fdr(Γ) ≡ Pr (H0|X ∈ Γ) = π0F0(Γ)/F (Γ),
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FDR control : Benjamini-Hochberg Procedure

Bayesian interpration of FDR

Bayesian Fdr and positive FDR [Storey (2003)]

Positive FDR : pFDR ≡ E
[
U

R

∣∣∣R > 0

]
+ FDR = pFDR× Pr(R > 0)

Theorem [Storey (2003)]

I R ≡ R(Γ) = # discoveries for the region of rejection Γ

I U ≡ U(Γ) = # false discoveries for the region of rejection Γ

If the Xi are independent and distributed according to the mixture model,

Fdr(Γ) ≡ Pr (H0|X ∈ Γ) = E

[
U(Γ)

R(Γ)

∣∣∣R(Γ) > 0

]
← Positive FDR

I proof relies on U(Γ) |R(Γ) = k ∼ binomial distribution B(k,Fdr(Γ))

+ interpretation of a frequentist concept as a Bayesian one
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FDR control : Benjamini-Hochberg Procedure

Empirical Bayes interpretation of BH procedure

Empirical Bayes Fdr estimate [Efron (2004, 2010)]

I F , F0 and F1 denote now the cdf of the mixture, null and non-null

I the test can be assumed to be left-sided : Γ = (−∞, t] and pi = F0(xi)

Estimation of Fdr(t) = π0F0(t)/F (t)

I F0, assumed to be known,

I π0, unknown but usually close to 1,

I F1, unlikely to be known in large-scale inference

However F = π0F0 + π1F1 can be estimated by its empirical distribution :

F (t) = #{xi ≤ t}/N

+ does not require to specify H1 : robust to alternative miss-specifications

+ empirical Bayes : prior on F estimated from the observations

I empirical Bayes Fdr estimate : Fdr(t) = π0F0(t)/F (t)
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FDR control : Benjamini-Hochberg Procedure

Empirical Bayes interpretation of BH procedure

Equivalence between Empirical Bayes Fdr control and BH procedure
Ordered observations x(1) ≤ x(2) ≤ . . . ≤ x(N)

I F0(x(i)) = p(i), and F (x(i)) = i/N

⇒ Fdr(x(i)) = π0
N
i
p(i)

Fdr control at level π0q

Given a preselected q, find t̂ = max
{
t : Fdr(t) ≤ π0q

}
⇔ t = maxi x(i) s.t. p(i) ≤ q iN
⇔ reject H

(1)
0 , . . . , H

(k̂)
0 where k̂ is the largest index s.t. p(k) ≤ q kN

⇔ BHq procedure

Fdr control and dependence

I F (t) is an unbiased estimator of F (t) even under dependence,

I Fdr is a rather slighlty upward biased estimate of FDR even under
dependence [Efron (2010)],

I price of dependence is the variance of the estimator Fdr(t)
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Variations on FDR control and BH Procedure

Improving power

Estimation of the proportion π0 of true H0

Adaptive BH procedures [Benjamini et al. (2006), Storey et al. (2004)]

I BH procedure overcontrols FDR : FDR(BHq) = π0q, where π0 = N0
N

I an upward bias estimator π̂0 of π0 can be plugged to improve power

+ Adaptive BH procedure : BH procedure at control level q/π̂0 to obtain
a FDR control at nominal level q

Storey’s π0 estimator [Storey et al. (2004)]

I Survival function G(t) = 1− F (t) of the p-values

G(λ) = π0G0(λ) + π1G1(λ) ≥ π0G0(λ) = π0(1− λ)

+ for large enough λ, G1(λ) ≈ 0, thus π0 ≈ G(λ)/(1− λ)

Based on the empirical survival funtion, the modified Storey’s estimator is

π̂0(λ) =
#{pi > λ}+ 1

N(1− λ)
, for a given λ ∈ (0, 1),
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Improving power

Adaptive BH procedures : Storey’s π0 estimator

Properties of adaptive BH procedure with modified Storey’s estimator π̂0(λ)

I exact control of FDR at nominal level q for independent tests,

I asymptotic control of FDR in case of weak dependence

Typical values of λ

Based on various simulations [Blanchard et al. (2009)]

I λ = 1
2
← “uniformly” more powerful than other adaptive procedures,

but not robust to strong dependences (e.g. equicorrelation of the test
statistics)

I λ = q ← powerful and quite robust to long memory dependences
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Dependence

Extension of BH procedure to dependent tests

Positive Regression Dependence on a Subset PRDS [Benjamini et al. (2001)]

BH procedure still controls FDR at nominal value q when the test statistics
vector obey the PRDS property : e.g. for one-sided tests

I Gaussian vector with positive correlations,

I Studentized gaussian PRDS vector for q ≤ 0.5

Universal bound [Benjamini and Yekutieli (2001)]

For any dependence structure, BH procedure still controls FDR at level

FDR(BHq) ≤ π0q c,

where π0 = N0
N

and c =
∑N
i=1

i
N
≈ log(N)

I too conservative to be useful in practice (more conservative than
Bonferroni when the number of rejected test k̂ is lower than c)
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Dependence

Knockoff filter for dependent tests [Barber and Candes (2015)]

Statistical linear model

y = Xβ + ε

I y ∈ Rn is the response vector

I ε ∈ Rn is a white gaussian noise vector

I X ∈ Rn×p is a determistic matrix of the p column predictors

I β ∈ Rp is the weight vector

Multiple testing problem : predictors associated with the response ?

I Hi
0 : “βi = 0”, for 1 ≤ i ≤ p

+ Knockoff construction to control FDR based on any model selection
procedure

+ Application to large-scale hypothesis testing, and/or strong local
dependences ?
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Learning the null distribution

Null hypothesis specification diagnonis
I BH procedure requires so little : only the choice of the test statistics

and its specification when the null hypothesis is true
I crucial to check that the null is correctly specified before !

Graphical diagnonis

qq-plot of the p-values must be linear for large enough values
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Learning the null distribution

Deviation from the theoretical null

I theoretical null hypothesis usually derived in an idealized framework,
does not not account for sample correlations,...

+ unlikely to be correctly specified in large-scale testing !

+ possibility to detect and correct possible miss-specification of the null
hypothesis

Empirical null distribution [Efron 2010]

Parametric H0 estimation : based on the observations that are the most
likely under theoretical H0, estimates of the null parameters (and π0)

I central matching

I maximum likelihood

Non-parametric H0 estimation

I permutation null distribution
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Concluding remarks

I FDR is a very useful global error criterion that allows one to control a
trade-off between Type I error and Power

I BH procedure is a very simple and quite robust procedure to control
FDR

I Main important problem and challenges still concerns the dependence :
how to explicitely account for dependence ?
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Supplementary materials

Some proofs of the BH procedure FDR control

I FDR control under independence

I FDR control under PRDS property

I universal FDR bound for an arbitrary depedence structure
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proof of the FDR control of BH procedure

I R ≡ set of discoveries, H0 ≡ set of N0 tur null hypotheses

I indicator trick : for discrete random variables E[A|B = b] Pr(B = b) = E[A× 1B=b]

FDR =
N∑

k=1

E

[ |R ∩ H0|
k

∣∣∣∣ |R| = k

]
Pr(|R| = k) =

N∑
k=1

1

k
E
[
|R ∩ H0| × 1|R|=k

]
,

=
N∑

k=1

1

k
E

 ∑
i∈H0

1
pi≤q k

N
× 1|R|=k

 =
∑

i∈H0

N∑
k=1

1

k
Pr

(
k̂ = k, pi ≤ q

k

N

)
,

=
q

N

∑
i∈H0

N∑
k=1

Pr

(
k̂ = k

∣∣∣∣pi ≤ q k
N

)
,

where the last equality comes from pi ∼ U[0,1] under the null (this becomes an inequality ≤ if

pi is assumed to be stocahstically greater than U[0,1] under the null)
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proof of the FDR control of BH procedure (cont’d)

Independent case

I k̂i ≡ number of discoveries except the ith test (r.v. in {0, . . . , N − 1}),

+ Pr
(
k̂ = k

∣∣∣pi ≤ q k
N

)
= Pr

(
k̂i = k − 1

∣∣∣pi ≤ q k
N

)
= Pr

(
k̂i = k − 1

)

FDR =
q

N

∑
i∈H0

N∑
k=1

Pr

(
k̂ = k

∣∣∣∣pi ≤ q k
N

)
=

q

N

∑
i∈H0

N−1∑
k=0

Pr
(
k̂
i

= k − 1
)

=
q

N

∑
i∈H0

1 =
N0

N
q

PRDS case
I PRDS : u 7→ Pr

(
k̂ ≤ k |pi = u

)
is increasing in u

+ Pr
(
k̂ ≤ k − 1

∣∣∣pi ≤ q k
N

)
≥ Pr

(
k̂ ≤ k − 1

∣∣∣pi ≤ q k−1
N

)
N∑

k=1

Pr

(
k̂ = k

∣∣∣∣pi ≤ q k
N

)
=

N∑
k=1

Pr

(
k̂ ≤ k

∣∣∣∣pi ≤ q k
N

)
− Pr

(
k̂ ≤ k − 1

∣∣∣∣pi ≤ q k
N

)
,

≤
N∑

k=1

Pr

(
k̂ ≤ k

∣∣∣∣pi ≤ q k
N

)
− Pr

(
k̂ ≤ k − 1

∣∣∣∣pi ≤ q k − 1

N

)

= Pr
(
k̂ ≤ N |pi ≤ q

)
− Pr

(
k̂ ≤ 1

∣∣∣∣pi ≤ q

N

)
+ Pr

(
k̂ = 1

∣∣∣∣pi ≤ q

N

)
= 1,

thus FDR ≤ N0
N
q
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proof of the FDR control bound for arbitrary dependence

Arbitrary dependence

I 1
k

= 1
k−1

− 1
k(k−1)

FDR =
∑

i∈H0

N∑
k=1

[
1

k
Pr

(
k̂ ≤ k, pi ≤ q

k

N

)
−

1

k
Pr

(
k̂ ≤ k − 1, pi ≤ q

k

N

)]
,

≤
∑

i∈H0

N∑
k=1

1

k
Pr

(
k̂ ≤ k, pi ≤ q

k

N

)
−

∑
i∈H0

N∑
k=2

1

k
Pr

(
k̂ ≤ k − 1, pi ≤ q

k − 1

N

)
,

=
∑

i∈H0

N∑
k=1

1

k
Pr

(
k̂ ≤ k, pi ≤ q

k

N

)
−

∑
i∈H0

N∑
k=2

1

k − 1
Pr

(
k̂ ≤ k − 1, pi ≤ q

k − 1

N

)

+
∑

i∈H0

N∑
k=2

1

k(k − 1)
Pr

(
k̂ ≤ k − 1, pi ≤ q

k − 1

N

)
,

≤
∑

i∈H0

1

N
Pr (pi ≤ q) +

∑
i∈H0

N∑
k=2

1

k(k − 1)
Pr

(
pi ≤ q

k − 1

N

)
,

=
N0

N
q +

N0

N
q

(
1

2
+ . . . +

1

N

)
=
N0

N
q

N∑
j=1

1

j
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