An Introduction on Multiple Testing:
False Discovery Control

Florent Chatelain

Gipsa-Lab / DIS, Grenoble INP

BasMatI, Porquerolles, 2015
Multiplicity problem and chance correlation

Lottery

- Winning probability for a given ticket is very low...
- But among the huge number of tickets, the probability that there is *at least one* winning ticket is quite high!

Paul the octopus

- Paul predicts eight of the 2010 FIFA World Cup matches with a perfect score!
- Does it really means that Paul is an Oracle?

Large-scale experiments: multiplying the comparisons dramatically increases the probability to obtain a good match by *pure chance*
Multiple Testing and FDR

Introduction

Multiplicity problem for statistical testing

- T is the test statistics,
- \mathcal{R}_α is the region of rejection at level α: if H_0 is true, $\Pr(T \in \mathcal{R}_\alpha) = \alpha$

Multiple testing issue

- N independent statistics T_1, \ldots, T_N obtained under the null H_0
- Probability to reject at least one of the N null hypotheses:

$$
\Pr(\exists T_i \in \mathcal{R}_\alpha) = 1 - \Pr(T_1, \ldots, T_N \notin \mathcal{R}_\alpha) = 1 - \prod_{i=1}^{N} \Pr(T_i \notin \mathcal{R}_\alpha),
$$

$$
= 1 - \prod_{i=1}^{N} (1 - \alpha) = 1 - (1 - \alpha)^N
$$

- for a usual significative level $\alpha = 0.05$, performing $N = 20$ tests gives a probability 0.64 to find a ‘significative’ discovery by pure chance...

Pr (at least one false positive) \gg Pr (the i-th is a false positive)
Multiplicility problem in science

The Economist, 2013, “Unreliable research”

Many published research findings in top-ranked journals are not, or poorly, reproducible [Ioannidis, 2005]

- if the test power is only 0.4, 40 true positives in average for 45 false positives. Is this significant?
Large-Scale Hypothesis Testing [Efron, 2010]

Era of Massive Data Production

- “omics” revolution, e.g. microarrays measures expression levels of tens of thousands of genes for hundreds of subjects
- astrophysics, e.g. MUSE spectro-imager delivers cubes of 300×300 images for 3600 wavelengths: detecting faint sources leads to $N \approx 3 \times 10^8$ tests in a pixelwise approach

Large-Scale methodology

- statistical inference and hypothesis testing theory developed in the early 20th century (Pearson, Fisher, Neyman, ...) for small-data sets collected by individual scientist
- corrections are needed to assess significance in large-scale experiments
Outline

Multiple testing error control
 Basic statistical hypothesis testing concepts
 Family-Wise Error Rate FWER
 False Discovery Rate FDR

FDR control: Benjamini-Hochberg Procedure
 BH Procedure
 Bayesian interpretation of FDR
 Empirical Bayes interpretation of BH procedure

Variations on FDR control and BH Procedure
 Improving power
 Dependence
 Learning the null distribution
Type I and Type II Errors

For an individual statistical hypothesis testing

<table>
<thead>
<tr>
<th>Actual</th>
<th>Decision</th>
<th>H_0 true</th>
<th>H_0 false</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0 true</td>
<td>True Negative (TN)</td>
<td>1 - α</td>
<td>False Positive (FP)</td>
</tr>
<tr>
<td>H_0 false</td>
<td>False Negative (FN)</td>
<td>Type II Error β</td>
<td>True Positive (TP)</td>
</tr>
</tbody>
</table>

- False Positive ← *false alarm,*
- False Negative ← *miss-detection,*
- $\alpha = \Pr(\text{Type I Error})$ ← *significance level,*
- $\beta = \Pr(\text{Type II Error})$
- Power $\pi = \Pr(\text{True Positive}) = 1 - \beta$
P-values : an universal language for hypothesis testing

Intuitive definition

p-value \equiv probability of obtaining a result as extreme or “more extreme” than the observed statistics, under H_0

One-sided test example

- T is the test statistic, t_{obs} an observed realization of T
- H_0 rejected when t_{obs} is too large : $\mathcal{R}_\alpha = \{ t : t \geq \eta_\alpha \}$

$$p(t_{\text{obs}}) = \Pr_{H_0} (T \geq t_{\text{obs}})$$

Mathematical definition

Smallest value of α such that $t_{\text{obs}} \in \mathcal{R}_\alpha$

$$p(t_{\text{obs}}) = \inf_{\alpha} \{ t_{\text{obs}} \in \mathcal{R}_\alpha \}$$
Multiple Testing and FDR

Multiple testing error control

Basic statistical hypothesis testing concepts

Property of p-values

- Note that $p(t_{obs}) \leq u \iff t_{obs} \in \mathcal{R}_u$, for all $u \in [0, 1]$
- Let $P = p(T)$ be the random variable. If H_0 is true

$$\Pr_{H_0}(P \leq u) = \Pr_{H_0}(T \in \mathcal{R}_u) = u,$$

p-value \equiv transformation of the test statistics to be uniformly distributed under the null (whatever the distribution of T)

Statistical hypothesis test based on p-value

H_0: p-value has a uniform distribution on $[0, 1]: P \sim \mathcal{U}([0, 1])$

H_1: p-value is stochastically lower than $\mathcal{U}([0, 1])$:

$$\Pr_{H_1}(P \leq u) = \Pr_{H_1}(T \in \mathcal{R}_u) > u,$$

p the smaller is $p \equiv p(t_{obs})$, the more decisively is H_0 rejected

- for a given α, H_0 is rejected at level α if $p \leq \alpha$
Counting the errors in multiple testing

- N hypothesis tests with a common procedure

<table>
<thead>
<tr>
<th></th>
<th>H_0 retained</th>
<th>H_0 rejected</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0 true</td>
<td>V</td>
<td>U</td>
<td>N_0</td>
</tr>
<tr>
<td>H_0 false</td>
<td>S</td>
<td>T</td>
<td>N_1</td>
</tr>
<tr>
<td>Total</td>
<td>$N - R$</td>
<td>R</td>
<td>N</td>
</tr>
</tbody>
</table>

- $N_0 = \#$ true nulls, $N_1 = \#$ true alternatives
- $U = \#$ False Positives ← Type I Errors
- $T = \#$ True Positives,
- $R = \#$ Rejections

How to define, and control, a global Type I Error rate/criterion?
Family-Wise Error Rate FWER

Multiple testing settings for N tests

- $H_0^1, H_0^2, \ldots, H_0^N \equiv$ family of null hypotheses
- $p_1, p_2, \ldots, p_N \equiv$ corresponding p-values

Definition

- The familywise error rate is

 \[\text{FWER} \equiv \Pr \left(\text{Reject at least one true } H_0^i \right) = \Pr \left(U > 0 \right) \]

- A FWER control procedure inputs a family of p-values p_1, p_2, \ldots, p_N and outputs the list of rejected null hypotheses with the constraint

 \[\text{FWER} \leq \alpha \]

for any preselected α
Bonferroni’s correction and FWER control

Bonferroni’s correction
Reject the null hypotheses H_0^i for which $p_i \leq \frac{\alpha}{N}$, ($N$ is the number of tests)

FWER control
Let I_0 be the indexes of the true null hypotheses, and $N_0 = \#I_0$

$$\text{FWER} = \Pr \left(\bigcup_{i \in I_0} p_i \leq \frac{\alpha}{N} \right) \leq \sum_{i \in I_0} \Pr \left(p_i \leq \frac{\alpha}{N} \right),$$

$$= N_0 \frac{\alpha}{N} \leq \alpha,$$

where the first inequality is the Boole’s inequality $\Pr (\bigcup_i A_i) \leq \sum_i \Pr (A_i)$.

- Bonferroni’s does not require that the tests be independent (the p_i can be dependent)
- Šidák correction ’improves’ Bonferroni for independent tests by rejecting the H_0^i for which $p_i \leq 1 - (1 - \alpha)^{1/N}$ ← equivalent for small α/N to Bonferroni : no real improvement.
Bonferroni’s correction and FWER control

Bonferroni’s correction
Reject the null hypotheses H_0^i for which $p_i \leq \frac{\alpha}{N}$, ($N$ is the number of tests)

FWER control
Let I_0 be the indexes of the true null hypotheses, and $N_0 = \#I_0$

$$\text{FWER} = \Pr \left(\bigcup_{i \in I_0} p_i \leq \frac{\alpha}{N} \right) \leq \sum_{i \in I_0} \Pr \left(p_i \leq \frac{\alpha}{N} \right),$$

$$= N_0 \frac{\alpha}{N} \leq \alpha,$$

where the first inequality is the Boole’s inequality $\Pr (\bigcup_i A_i) \leq \sum_i \Pr (A_i)$.

- Bonferroni’s does not require that the tests be independent (the p_i can be dependent)
- Šidák correction 'improves' Bonferroni for independent tests by rejecting the H_0^i for which $p_i \leq 1 - (1 - \alpha)^{1/N} \leftarrow$ equivalent for small α/N to Bonferroni : no real improvement.
Stepwise FWER control procedures

Ordered p-values $p(1) \leq p(2) \leq \ldots \leq p(N)$ and associated null hypotheses $H_0^{(1)}, \ldots, H_0^{(N)}$

Step-down procedures

- Reject $H_0^{(k)}$ when $p(j) \leq t_{\alpha,j}$ for $j = 1, \ldots, k$

 Learning from the other experiments idea

- Reject $H_0^{(1)}, \ldots, H_0^{(\hat{k}_{\text{max}})}$ where \hat{k}_{max} is the largest index satisfying (1)

 Global threshold $\hat{t}_\alpha \equiv t_{\alpha,\hat{k}_{\text{max}}}$ ← “testimation” problem

- Holm’s procedure: $t_{\alpha,j} = \frac{\alpha}{N-j+1}$ ensures FWER control at level α (not requiring independence) ← uniformly more powerful than Bonferroni

Step-up procedures

- Hochberg’s procedure: $\hat{t}_\alpha = t_{\alpha,\hat{k}_{\text{max}}}$ where \hat{k}_{max} is the largest index satisfying $p(k) \leq \frac{\alpha}{N-k+1}$

 Unif. more powerful than Holm but requires the tests to be independent
Practical limits of FWER

- FWER is appropriate to guard against *any* false positives
- In many applications, this appears to be too stringent: we can accept several false positives if their number is still much “lower” than the number of true positives...
- More liberal variants

\[k - \text{FWER} \equiv \Pr \left(\text{Reject at least } k \text{ true } H_0^i \right) = \Pr \left(U \geq k \right), \]

but how to preselect a relevant \(k \) for a given problem?

- Need to define a less stringent global Type I Error rate criterion, more useful in many applications
False Discovery Rate FDR [Benjamini and Hochberg, 1995]

“Discovery” terminology

- \(R \equiv \# \) Discoveries (Rejections)
- \(U \equiv \# \) False Discoveries (False Positives) \leftarrow \text{Type I errors},
- \(T \equiv \# \) True Discoveries (True Positives),

\[
\begin{array}{c|c|c|c}
\text{Actual} & H_0 \text{ retained} & H_0 \text{ rejected} & \text{Total} \\
\hline
H_0 \text{ true} & V & U & N_0 \\
H_0 \text{ false} & S & T & N_1 \\
\hline
\text{Total} & N - R & R & N \\
\end{array}
\]

Definition

\[
\text{FDP} \equiv \frac{U}{R \vee 1}, \quad \text{where} \quad R \vee 1 \equiv \max (R, 1) \leftarrow \text{False Discovery Proportion}
\]

\[
\text{FDR} \equiv E[\text{FDP}] = E \left[\frac{U}{R \vee 1} \right] \leftarrow \text{False Discovery Rate}
\]

- Single test errors, or power, are calculated horizontally in the table
- False Discovery Rate is calculated vertically (Bayesian flavor)
False Discovery Rate FDR [Benjamini and Hochberg, 1995]

“Discovery” terminology

- \(R \equiv \# \) Discoveries (Rejections)
- \(U \equiv \# \) False Discoveries (False Positives) ← Type I errors,
- \(T \equiv \# \) True Discoveries (True Positives),

<table>
<thead>
<tr>
<th>Decision</th>
<th>(H_0) retained</th>
<th>(H_0) rejected</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_0) true</td>
<td>(V)</td>
<td>(U)</td>
<td>(N_0)</td>
</tr>
<tr>
<td>(H_0) false</td>
<td>(S)</td>
<td>(T)</td>
<td>(N_1)</td>
</tr>
<tr>
<td>Total</td>
<td>(N - R)</td>
<td>(R)</td>
<td>(N)</td>
</tr>
</tbody>
</table>

Definition

- FDP \(\equiv \frac{U}{R \lor 1} \), where \(R \lor 1 \equiv \max (R, 1) \) ← False Discovery Proportion
- FDR \(\equiv E \left[\text{FDP} \right] = E \left[\frac{U}{R \lor 1} \right] \) ← False Discovery Rate

- Single test errors, or power, are calculated horizontally in the table
- False Discovery Rate is calculated vertically (Bayesian flavor)
False Discovery Rate FDR [Benjamini and Hochberg, 1995]

“Discovery” terminology

- $R \equiv \# \text{ Discoveries (Rejections)}$
- $U \equiv \# \text{ False Discoveries (False Positives)} \leftarrow \text{Type I errors,}$
- $T \equiv \# \text{ True Discoveries (True Positives),}$

<table>
<thead>
<tr>
<th>Decision</th>
<th>H_0 retained</th>
<th>H_0 rejected</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0 true</td>
<td>V</td>
<td>U</td>
<td>N_0</td>
</tr>
<tr>
<td>H_0 false</td>
<td>S</td>
<td>T</td>
<td>N_1</td>
</tr>
<tr>
<td>Total</td>
<td>$N - R$</td>
<td>R</td>
<td>N</td>
</tr>
</tbody>
</table>

Definition

FDP $\equiv \frac{U}{R \lor 1}$, where $R \lor 1 \equiv \max(R, 1) \leftarrow \text{False Discovery Proportion}$

FDR $\equiv E[\text{FDP}] = E\left[\frac{U}{R \lor 1}\right] \leftarrow \text{False Discovery Rate}$

- single test errors, or power, are calculated horizontally in the table
- False Discovery Rate is calculated vertically (Bayesian flavor)
FDR control is more liberal than FWER

FWER control procedure controls FDR

\[
\text{FDR} = E \left[\frac{U}{R \lor 1} \right] = E \left[\frac{U}{R \lor 1} \mid U = 0 \right] \Pr (U = 0) + E \left[\frac{U}{R \lor 1} \mid U > 0 \right] \Pr (U > 0),
\]

\[
= E \left[\frac{U}{R} \right] \Pr (U > 0), \quad \text{where } 0 \leq \frac{U}{R} \leq 1,
\]

\[
\leq \Pr (U > 0) = \text{FWER}
\]

Procedure controlling FWER at level \(\alpha \) controls FDR at level \(\alpha \)

FDR control procedure controls the FWER in the *weak* sense

If all the nulls \(H_0^1, \ldots, H_0^N \) are true then \(U = R \) and

\[
\text{FDR} = E \left[\frac{U}{R} \mid U > 0 \right] \Pr (U > 0) = 1 \times \Pr (U > 0) = \text{FWER}
\]

Procedure controlling FDR at level \(q \) controls FDR at level \(q \) only when all null hypotheses are true
FDR control is more liberal than FWER

FWER control procedure controls FDR

\[
FDR = E \left[\frac{U}{R \vee 1} \right] = E \left[\frac{U}{R \vee 1} \mid U = 0 \right] \Pr (U = 0) + E \left[\frac{U}{R \vee 1} \mid U > 0 \right] \Pr (U > 0),
\]

\[
= E \left[\frac{U}{R} \mid U > 0 \right] \Pr (U > 0), \quad \text{where } 0 \leq \frac{U}{R} \leq 1,
\]

\[
\leq \Pr (U > 0) = \text{FWER}
\]

Procedure controlling FWER at level \(\alpha \) controls FDR at level \(\alpha \)

FDR control procedure controls the FWER in the weak sense

If all the nulls \(H_0^1, \ldots, H_0^N \) are true then \(U = R \) and

\[
FDR = E \left[\frac{U}{R} \mid U > 0 \right] \Pr (U > 0) = 1 \times \Pr (U > 0) = \text{FWER}
\]

Procedure controlling FDR at level \(q \) controls FDR at level \(q \) only

when all null hypotheses are true
Outline

Multiple testing error control
 - Basic statistical hypothesis testing concepts
 - Family-Wise Error Rate FWER
 - False Discovery Rate FDR

FDR control: Benjamini-Hochberg Procedure
 - BH Procedure
 - Bayesian interpretation of FDR
 - Empirical Bayes interpretation of BH procedure

Variations on FDR control and BH Procedure
 - Improving power
 - Dependence
 - Learning the null distribution
Canonical example

Source detection (oversimplified) problem
Statiscal linear model (source + noise)

\[
\begin{pmatrix}
X_1 \\
X_2 \\
\vdots \\
X_N
\end{pmatrix}
= \mu
\begin{pmatrix}
r_1 \\
r_2 \\
\vdots \\
r_N
\end{pmatrix}
+ \begin{pmatrix}
\epsilon_1 \\
\epsilon_2 \\
\vdots \\
\epsilon_N
\end{pmatrix}
\]

- $\mu > 0 \leftarrow$ source response
- $r_i \in \{0, 1\} \leftarrow$ absence ($r_i = 0$) or presence ($r_i = 1$) of source for ith location
- $\epsilon_i, 1 \leq i \leq N$, are iid with $\mathcal{N}(0, 1)$ distribution \leftarrow gaussian noise
- X_i is the ith observation
Canonical example (cont’d)

Multiple testing problem
for each i

- H_0: null hypothesis \equiv absence of signal, i.e. $r_i = 0$
- H_1: alternative hypothesis \equiv presence of signal, i.e. $r_i = 1$

Test statistics
for each i

- X_i is the test statistics
- $p_i = 1 - \Phi(X_i)$, where Φ is the standard normal cdf, is the associated p-value

How to choose a good threshold t to reject the tests s.t. $p_i \leq t$?
Ordered p-values plot for $N = 50$, $N_0 = 40$, $\mu = 2$, $\alpha = 0.1$

Ordered p-values $p_1 \leq p_2 \leq \cdots \leq p_N$ vs theoretical quantiles $1/N, 2/N, \ldots, 1$ under the null
Ordered p-values plot for $N = 100$, $N_0 = 80$, $\mu = 3$, $\alpha = 0.1$

Try something between Bonferroni and one test control: choose $t_i = q \frac{i}{N}$ (here $q = \alpha = 0.1$)
Benjamini-Hochberg (BH) procedure

Ordered p-values $p(1) \leq p(2) \leq \ldots \leq p(N)$ and associated null hypotheses $H_0^{(1)}, \ldots, H_0^{(N)}$, let $p(0) = 0$ by convention

Step-up BH procedure
For a preselected control level $0 \leq q \leq 1$, BH$_q$ procedure rejects $H_0^{(1)}, \ldots, H_0^{(\hat{k})}$ where

$$\hat{k} = \max \left\{ 0 \leq k \leq N : p(k) \leq q \frac{k}{N} \right\}$$

\Leftrightarrow region of rejection $R^{BH} = \{ p \leq \hat{t}_q \}$ with $\hat{t}_q = q \frac{\hat{k}}{N}$

learning from the other experiments idea

“testimation problem” : blurs the line between testing and estimation
FDR control of BH procedure

Theorem [Benjamini and Hochberg (1995)]
Under the independence assumption among the tests, BH$_q$ procedure control the FDR at level:

$$\text{FDR} \leq \frac{N_0}{N} q \leq q,$$

where N_0 is the number of true null hypotheses

- in practice N_0 is unknown and bounded by N ($\pi_0 \equiv \frac{N_0}{N} \leq 1$)
- BH procedure control can be extended beyond independence for special cases of positive dependence [Benjamini and Yekutieli (2001)]
- Typical value of q: no real conventional choice in the literature, though $q = 0.1$ seems to be popular
Popularity of FDR and BH procedure

Historical context and citations of the seminal paper [Benjamini and Hochberg, 1995] (many thanks to Marine Roux for the picture)

FDR for Big Data
Large-scale hypothesis testing in many fields
- DNA microarray, genomics, fMRI data,
- Several works with astronomical imaging applications since the early 2000s
Outline

Multiple testing error control
- Basic statistical hypothesis testing concepts
- Family-Wise Error Rate FWER
- False Discovery Rate FDR

FDR control : Benjamini-Hochberg Procedure
- BH Procedure
- Bayesian interpretation of FDR
- Empirical Bayes interpretation of BH procedure

Variations on FDR control and BH Procedure
- Improving power
- Dependence
- Learning the null distribution
Mixture model

Denote by X one test statistic, and Γ any subset of the real line.

Two Group Mixture model

N tests statistics are either null or non-null with prior probability

- $\pi_0 \equiv \Pr(H_0)$ (in practice, π_0 will be often close to 1),
- $\pi_1 \equiv \Pr(H_1) = 1 - \pi_0$,

and respective distributions,

- $F_0(\Gamma) \equiv \Pr(X \in \Gamma|H_0) \leftarrow$ null case
- $F_1(\Gamma) \equiv \Pr(X \in \Gamma|H_1) \leftarrow$ non-null case

The distribution of any X is the mixture with distribution

$$F(\Gamma) = \pi_0 F_0(\Gamma) + \pi_1 F_1(\Gamma)$$
Bayesian Fdr

Classification problem

- We observe $x \in \Gamma$, does it corresponds to the null group?
- Applying the Bayes rule yields the posterior of the null

$$
\Pr (H_0 | X \in \Gamma) = \frac{\pi_0 F_0(\Gamma)}{F(\Gamma)}
$$

Bayesian false discovery rate [Efron (2004,2010)]

- Γ is now the region of rejection of the null
- *Bayesian false discovery rate* defined as

$$
\text{Fdr}(\Gamma) \equiv \Pr (H_0 | X \in \Gamma) = \frac{\pi_0 F_0(\Gamma)}{F(\Gamma)},
$$
Bayesian Fdr and positive FDR [Storey (2003)]

Positive FDR : \(\text{pFDR} \equiv E \left[\frac{U}{R} \middle| R > 0 \right] \)

\(\text{FDR} = \text{pFDR} \times \Pr(R > 0) \)

Theorem [Storey (2003)]

- \(R \equiv R(\Gamma) = \# \text{ discoveries for the region of rejection } \Gamma \)
- \(U \equiv U(\Gamma) = \# \text{ false discoveries for the region of rejection } \Gamma \)

If the \(X_i \) are independent and distributed according to the mixture model,

\[\text{Fdr}(\Gamma) \equiv \Pr(H_0|X \in \Gamma) = E \left[\frac{U(\Gamma)}{R(\Gamma)} \middle| R(\Gamma) > 0 \right] \leftarrow \text{Positive FDR} \]

- proof relies on \(U(\Gamma) \mid R(\Gamma) = k \sim \text{binomial distribution } B(k, \text{Fdr}(\Gamma)) \)
- interpretation of a frequentist concept as a Bayesian one
Empirical Bayes Fdr estimate [Efron (2004, 2010)]

- F, F_0 and F_1 denote now the cdf of the mixture, null and non-null
- the test can be assumed to be left-sided: $\Gamma = (-\infty, t]$ and $p_i = F_0(x_i)$

Estimation of $\text{Fdr}(t) = \pi_0 F_0(t)/F(t)$

- F_0, assumed to be known,
- π_0, unknown but usually close to 1,
- F_1, unlikely to be known in large-scale inference

However $F = \pi_0 F_0 + \pi_1 F_1$ can be estimated by its empirical distribution:

$$\overline{F}(t) = \#\{x_i \leq t\}/N$$

- does not require to specify H_1 : robust to alternative miss-specifications
- empirical Bayes : prior on F estimated from the observations
- empirical Bayes Fdr estimate : $\overline{\text{Fdr}}(t) = \pi_0 F_0(t)/\overline{F}(t)$
Empirical Bayes Fdr estimate [Efron (2004, 2010)]

- F, F_0 and F_1 denote now the cdf of the mixture, null and non-null
- the test can be assumed to be left-sided: $\Gamma = (-\infty, t]$ and $p_i = F_0(x_i)$

Estimation of $\text{Fdr}(t) = \pi_0 F_0(t)/F(t)$

- F_0, assumed to be known,
- π_0, unknown but usually close to 1,
- F_1, unlikely to be known in large-scale inference

However $F = \pi_0 F_0 + \pi_1 F_1$ can be estimated by its empirical distribution:

$$\overline{F}(t) = \#\{x_i \leq t\}/N$$

- does not require to specify H_1: robust to alternative miss-specifications
- empirical Bayes: prior on F estimated from the observations
- empirical Bayes Fdr estimate: $\overline{\text{Fdr}}(t) = \pi_0 F_0(t)/\overline{F}(t)$
Equivalence between Empirical Bayes Fdr control and BH procedure

Ordered observations $x(1) \leq x(2) \leq \ldots \leq x(N)$

- $F_0(x(i)) = p(i)$, and $\overline{F}(x(i)) = i/N$

$\Rightarrow \overline{\text{Fdr}}(x(i)) = \pi_0 \frac{N}{i} p(i)$

Fdr control at level $\pi_0 q$

Given a preselected q, find $\hat{t} = \max \{ t : \overline{\text{Fdr}}(t) \leq \pi_0 q \}$

$\Leftrightarrow t = \max_i x(i)$ s.t. $p(i) \leq q \frac{i}{N}$

\Leftrightarrow reject $H_0^{(1)}, \ldots, H_0^{(\hat{k})}$ where \hat{k} is the largest index s.t. $p(k) \leq q \frac{k}{N}$

\Leftrightarrow BH$_q$ procedure

Fdr control and dependence

- $\overline{F}(t)$ is an unbiased estimator of $F(t)$ even under dependence,
- $\overline{\text{Fdr}}$ is a rather slightly upward biased estimate of FDR even under dependence [Efron (2010)],
- price of dependence is the variance of the estimator $\overline{\text{Fdr}}(t)$
Equivalence between Empirical Bayes Fdr control and BH procedure

Ordered observations \(x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(N)} \)

\[F_0(x_{(i)}) = p(i), \quad \text{and } \overline{F}(x_{(i)}) = i/N \]

\[\Rightarrow \overline{\text{Fdr}}(x_{(i)}) = \pi_0 \frac{N}{i} p(i) \]

Fdr control at level \(\pi_0 q \)

Given a preselected \(q \), find \(\hat{t} = \max \{ t : \overline{\text{Fdr}}(t) \leq \pi_0 q \} \)

\[\Leftrightarrow t = \max_i x_{(i)} \text{ s.t. } p(i) \leq q \frac{i}{N} \]

\[\Leftrightarrow \text{reject } H_0^{(1)}, \ldots, H_0^{(\hat{k})} \text{ where } \hat{k} \text{ is the largest index s.t. } p(k) \leq q \frac{k}{N} \]

\[\Leftrightarrow \text{BH}_q \text{ procedure} \]

Fdr control and dependence

\[\overline{F}(t) \text{ is an unbiased estimator of } F(t) \text{ even under dependence,} \]

\[\overline{\text{Fdr}} \text{ is a rather slightly upward biased estimate of FDR even under dependence} \quad \text{[Efron (2010)]}, \]

\[\text{price of dependence is the variance of the estimator } \overline{\text{Fdr}}(t) \]
Outline

Multiple testing error control
- Basic statistical hypothesis testing concepts
- Family-Wise Error Rate FWER
- False Discovery Rate FDR

FDR control: Benjamini-Hochberg Procedure
- BH Procedure
- Bayesian interpretation of FDR
- Empirical Bayes interpretation of BH procedure

Variations on FDR control and BH Procedure
- Improving power
- Dependence
- Learning the null distribution
Estimation of the proportion π_0 of true H_0

Adaptive BH procedures [Benjamini et al. (2006), Storey et al. (2004)]

- BH procedure overcontrols FDR: $\text{FDR}(\text{BH}_{q}) = \pi_0 q$, where $\pi_0 = \frac{N_0}{N}$
- an upward bias estimator $\hat{\pi}_0$ of π_0 can be plugged to improve power

Adaptive BH procedure: BH procedure at control level $q/\hat{\pi}_0$ to obtain a FDR control at nominal level q

Storey’s π_0 estimator [Storey et al. (2004)]

- Survival function $G(t) = 1 - F(t)$ of the p-values

$$G(\lambda) = \pi_0 G_0(\lambda) + \pi_1 G_1(\lambda) \geq \pi_0 G_0(\lambda) = \pi_0 (1 - \lambda)$$

for large enough λ, $G_1(\lambda) \approx 0$, thus $\pi_0 \approx G(\lambda)/(1 - \lambda)$

Based on the empirical survival function, the modified Storey’s estimator is

$$\hat{\pi}_0(\lambda) = \frac{\#\{p_i > \lambda\} + 1}{N(1 - \lambda)}, \text{ for a given } \lambda \in (0, 1),$$
Estimation of the proportion π_0 of true H_0

Adaptive BH procedures [Benjamini et al. (2006), Storey et al. (2004)]

- BH procedure overcontrols FDR: $\text{FDR}(\text{BH}_q) = \pi_0 q$, where $\pi_0 = \frac{N_0}{N}$
- an upward bias estimator $\hat{\pi}_0$ of π_0 can be plugged to improve power

Adaptive BH procedure: BH procedure at control level $q/\hat{\pi}_0$ to obtain a FDR control at nominal level q

Storey’s π_0 estimator [Storey et al. (2004)]

- Survival function $G(t) = 1 - F(t)$ of the p-values
 \[G(\lambda) = \pi_0 G_0(\lambda) + \pi_1 G_1(\lambda) \geq \pi_0 G_0(\lambda) = \pi_0 (1 - \lambda) \]
 for large enough λ, $G_1(\lambda) \approx 0$, thus $\pi_0 \approx G(\lambda)/(1 - \lambda)$

Based on the empirical survival function, the modified Storey’s estimator is
\[
\hat{\pi}_0(\lambda) = \frac{\# \{ p_i > \lambda \} + 1}{N (1 - \lambda)}, \quad \text{for a given } \lambda \in (0, 1),
\]
Adaptive BH procedures: Storey’s π_0 estimator

Properties of adaptive BH procedure with modified Storey’s estimator $\hat{\pi}_0(\lambda)$

- exact control of FDR at nominal level q for independent tests,
- asymptotic control of FDR in case of weak dependence

Typical values of λ

Based on various simulations [Blanchard et al. (2009)]

- $\lambda = \frac{1}{2}$ \leftarrow “uniformly” more powerful than other adaptive procedures, but not robust to strong dependences (e.g. equicorrelation of the test statistics)
- $\lambda = q$ \leftarrow powerful and quite robust to long memory dependences
Extension of BH procedure to dependent tests

Positive Regression Dependence on a Subset PRDS [Benjamini et al. (2001)]
BH procedure still controls FDR at nominal value \(q \) when the test statistics vector obey the PRDS property: e.g. for one-sided tests

- Gaussian vector with positive correlations,
- Studentized gaussian PRDS vector for \(q \leq 0.5 \)

Universal bound [Benjamini and Yekutieli (2001)]
For any dependence structure, BH procedure still controls FDR at level

\[
\text{FDR}(\text{BH}_q) \leq \pi_0 q c,
\]

where \(\pi_0 = \frac{N_0}{N} \) and \(c = \sum_{i=1}^{N} \frac{i}{N} \approx \log(N) \)

- too conservative to be useful in practice (more conservative than Bonferroni when the number of rejected test \(\hat{k} \) is lower than \(c \))
Knockoff filter for dependent tests [Barber and Candes (2015)]

Statistical linear model

\[y = X\beta + \epsilon \]

- \(y \in \mathbb{R}^n \) is the response vector
- \(\epsilon \in \mathbb{R}^n \) is a white gaussian noise vector
- \(X \in \mathbb{R}^{n \times p} \) is a deterministic matrix of the \(p \) column predictors
- \(\beta \in \mathbb{R}^p \) is the weight vector

Multiple testing problem: predictors associated with the response?

- \(H_0^i : \beta_i = 0 \), for \(1 \leq i \leq p \)

- Knockoff construction to control FDR based on any model selection procedure

- Application to large-scale hypothesis testing, and/or strong local dependences?
Null hypothesis specification diagnosis

- BH procedure requires so little: only the choice of the test statistics and its specification when the null hypothesis is true
- crucial to check that the null is correctly specified before!

Graphical diagnosis

qq-plot of the p-values must be linear for large enough values

correctly specified H_0
Null hypothesis specification diagnosis

- BH procedure requires so little: only the choice of the test statistics and its specification when the null hypothesis is true
- crucial to check that the null is correctly specified before!

Graphical diagnosis

qq-plot of the p-values must be linear for large enough values
Learning the null distribution

Deviation from the theoretical null

- theoretical null hypothesis usually derived in an idealized framework, does not account for sample correlations,...
- unlikely to be correctly specified in large-scale testing!
- possibility to detect and correct possible miss-specification of the null hypothesis

Empirical null distribution [Efron 2010]

Parametric H_0 estimation: based on the observations that are the most likely under theoretical H_0, estimates of the null parameters (and π_0)

- central matching
- maximum likelihood

Non-parametric H_0 estimation

- permutation null distribution
Concluding remarks

- FDR is a very useful global error criterion that allows one to control a trade-off between Type I error and Power

- BH procedure is a very simple and quite robust procedure to control FDR

- Main important problem and challenges still concerns the dependence: how to explicitly account for dependence?
Selected references

Selected references with Astrophysics applications

Great talks on multiple testing / FDR available on the web

Genovese, C. R. “A Tutorial on False Discovery Control,”
http://www.stat.cmu.edu/~genovese/talks/hannover1-04.pdf

Benjamini Y. (2005) “Discovering the False Discovery Rate,”
Supplementary materials

Some proofs of the BH procedure FDR control

- FDR control under independence
- FDR control under PRDS property
- universal FDR bound for an arbitrary dependence structure
proof of the FDR control of BH procedure

- $\mathcal{R} \equiv$ set of discoveries, $\mathcal{H}_0 \equiv$ set of N_0 true null hypotheses
- indicator trick: for discrete random variables $E[A|B = b] \Pr(B = b) = E[A \times 1_{B=b}]$

$$\text{FDR} = \sum_{k=1}^{N} E \left[\frac{|\mathcal{R} \cap \mathcal{H}_0|}{k} \Bigg| |\mathcal{R}| = k \right] \Pr(|\mathcal{R}| = k) = \sum_{k=1}^{N} \frac{1}{k} E \left[|\mathcal{R} \cap \mathcal{H}_0| \times 1_{|\mathcal{R}| = k} \right],$$

$$= \sum_{k=1}^{N} \frac{1}{k} E \left[\sum_{i \in \mathcal{H}_0} 1_{p_i \leq q \frac{k}{N}} \times 1_{|\mathcal{R}| = k} \right] = \sum_{i \in \mathcal{H}_0} \sum_{k=1}^{N} \frac{1}{k} \Pr \left(\hat{k} = k, p_i \leq q \frac{k}{N} \right),$$

$$= \frac{q}{N} \sum_{i \in \mathcal{H}_0} \sum_{k=1}^{N} \Pr \left(\hat{k} = k \bigg| p_i \leq q \frac{k}{N} \right),$$

where the last equality comes from $p_i \sim U_{[0,1]}$ under the null (this becomes an inequality \leq if p_i is assumed to be stochastically greater than $U_{[0,1]}$ under the null).
proof of the FDR control of BH procedure (cont’d)

Independent case

\[\hat{k}^i \equiv \text{number of discoveries except the } i\text{th test (r.v in } \{0, \ldots, N-1\}) \]

\[\Pr(\hat{k} = k \mid p_i \leq q \frac{k}{N}) = \Pr(\hat{k}^i = k - 1 \mid p_i \leq q \frac{k}{N}) = \Pr(\hat{k}^i = k - 1) \]

\[\text{FDR} = \frac{q}{N} \sum_{i \in \mathcal{H}_0} \sum_{k=1}^{N} \Pr(\hat{k} = k \mid p_i \leq q \frac{k}{N}) = \frac{q}{N} \sum_{i \in \mathcal{H}_0} \sum_{k=0}^{N-1} \Pr(\hat{k}^i = k - 1) = \frac{q}{N} \sum_{i \in \mathcal{H}_0} 1 = \frac{N_0}{N} q \]

PRDS case

\[\Pr(\hat{k} \leq k - 1 \mid p_i \leq q \frac{k-1}{N}) \]

\[\sum_{k=1}^{N} \Pr(\hat{k} = k \mid p_i \leq q \frac{k}{N}) = \sum_{k=1}^{N} \Pr(\hat{k} \leq k \mid p_i \leq q \frac{k}{N}) - \Pr(\hat{k} \leq k - 1 \mid p_i \leq q \frac{k}{N}) \]

\[\leq \sum_{k=1}^{N} \Pr(\hat{k} \leq k \mid p_i \leq q \frac{k}{N}) - \Pr(\hat{k} \leq k - 1 \mid p_i \leq q \frac{k-1}{N}) \]

\[= \Pr(\hat{k} \leq N \mid p_i \leq q) - \Pr(\hat{k} \leq 1 \mid p_i \leq q \frac{1}{N}) + \Pr(\hat{k} = 1 \mid p_i \leq q) = 1, \]

thus \(\text{FDR} \leq \frac{N_0}{N} q \)
proof of the FDR control bound for arbitrary dependence

Arbitrary dependence

\[
\frac{1}{k} = \frac{1}{k-1} - \frac{1}{k(k-1)}
\]

\[
\text{FDR} = \sum_{i \in \mathcal{H}_0} \sum_{k=1}^{N} \left[\frac{1}{k} \Pr \left(\hat{k} \leq k, p_i \leq q \frac{k}{N} \right) - \frac{1}{k} \Pr \left(\hat{k} \leq k-1, p_i \leq q \frac{k}{N} \right) \right],
\]

\[
\leq \sum_{i \in \mathcal{H}_0} \sum_{k=1}^{N} \frac{1}{k} \Pr \left(\hat{k} \leq k, p_i \leq q \frac{k}{N} \right) - \sum_{i \in \mathcal{H}_0} \sum_{k=2}^{N} \frac{1}{k} \Pr \left(\hat{k} \leq k-1, p_i \leq q \frac{k-1}{N} \right),
\]

\[
= \sum_{i \in \mathcal{H}_0} \sum_{k=1}^{N} \frac{1}{k} \Pr \left(\hat{k} \leq k, p_i \leq q \frac{k}{N} \right) - \sum_{i \in \mathcal{H}_0} \sum_{k=2}^{N} \frac{1}{k-1} \Pr \left(\hat{k} \leq k-1, p_i \leq q \frac{k-1}{N} \right),
\]

\[
+ \sum_{i \in \mathcal{H}_0} \sum_{k=2}^{N} \frac{1}{k(k-1)} \Pr \left(\hat{k} \leq k-1, p_i \leq q \frac{k-1}{N} \right),
\]

\[
\leq \sum_{i \in \mathcal{H}_0} \frac{1}{N} \Pr (p_i \leq q) + \sum_{i \in \mathcal{H}_0} \sum_{k=2}^{N} \frac{1}{k(k-1)} \Pr \left(p_i \leq q \frac{k-1}{N} \right),
\]

\[
= \frac{N_0}{N} q + \frac{N_0}{N} q \left(\frac{1}{2} + \ldots + \frac{1}{N} \right) = \frac{N_0}{N} q \sum_{j=1}^{N} \frac{1}{j}.
\]